Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
Sean Cho
commited on
Commit
·
bcb8d03
1
Parent(s):
2a9714f
update to latest
Browse files- README.md +2 -1
- app.py +85 -68
- requirements.txt +4 -3
- src/display_models/get_model_metadata.py +50 -15
- src/display_models/model_metadata_flags.py +0 -7
- src/display_models/read_results.py +2 -2
- src/load_from_hub.py +1 -4
README.md
CHANGED
@@ -4,10 +4,11 @@ emoji: 📉
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.43.2
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
+
duplicated_from: HuggingFaceH4/open_llm_leaderboard
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -222,21 +222,6 @@ def add_new_eval(
|
|
222 |
|
223 |
|
224 |
# Basics
|
225 |
-
def refresh() -> list[pd.DataFrame]:
|
226 |
-
leaderboard_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
|
227 |
-
(
|
228 |
-
finished_eval_queue_df,
|
229 |
-
running_eval_queue_df,
|
230 |
-
pending_eval_queue_df,
|
231 |
-
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
232 |
-
return (
|
233 |
-
leaderboard_df,
|
234 |
-
finished_eval_queue_df,
|
235 |
-
running_eval_queue_df,
|
236 |
-
pending_eval_queue_df,
|
237 |
-
)
|
238 |
-
|
239 |
-
|
240 |
def change_tab(query_param: str):
|
241 |
query_param = query_param.replace("'", '"')
|
242 |
query_param = json.loads(query_param)
|
@@ -248,17 +233,16 @@ def change_tab(query_param: str):
|
|
248 |
|
249 |
|
250 |
# Searching and filtering
|
251 |
-
def
|
252 |
-
|
253 |
-
if
|
254 |
-
filtered_df =
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
else:
|
259 |
-
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
260 |
-
return filtered_df[current_columns]
|
261 |
|
|
|
|
|
262 |
|
263 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
264 |
always_here_cols = [
|
@@ -272,31 +256,32 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
272 |
return filtered_df
|
273 |
|
274 |
NUMERIC_INTERVALS = {
|
275 |
-
"
|
276 |
-
"
|
277 |
-
"~
|
278 |
-
"~
|
279 |
-
|
280 |
-
# "
|
|
|
281 |
}
|
282 |
|
283 |
def filter_models(
|
284 |
-
df: pd.DataFrame,
|
285 |
) -> pd.DataFrame:
|
286 |
-
current_columns = current_columns_df.columns
|
287 |
-
|
288 |
# Show all models
|
289 |
if show_deleted:
|
290 |
-
filtered_df = df
|
291 |
else: # Show only still on the hub models
|
292 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
293 |
|
294 |
type_emoji = [t[0] for t in type_query]
|
295 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
296 |
|
297 |
-
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
|
298 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
299 |
-
|
|
|
300 |
|
301 |
return filtered_df
|
302 |
|
@@ -310,6 +295,12 @@ with demo:
|
|
310 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
311 |
with gr.Row():
|
312 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
with gr.Row():
|
314 |
shown_columns = gr.CheckboxGroup(
|
315 |
choices=[
|
@@ -343,11 +334,6 @@ with demo:
|
|
343 |
value=True, label="👀 Show gated/private/deleted models", interactive=True
|
344 |
)
|
345 |
with gr.Column(min_width=320):
|
346 |
-
search_bar = gr.Textbox(
|
347 |
-
placeholder="🔍 Search for your model and press ENTER...",
|
348 |
-
show_label=False,
|
349 |
-
elem_id="search-bar",
|
350 |
-
)
|
351 |
with gr.Box(elem_id="box-filter"):
|
352 |
filter_columns_type = gr.CheckboxGroup(
|
353 |
label="Model types",
|
@@ -366,6 +352,13 @@ with demo:
|
|
366 |
interactive=True,
|
367 |
elem_id="filter-columns-type",
|
368 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
filter_columns_size = gr.CheckboxGroup(
|
370 |
label="Model sizes",
|
371 |
choices=list(NUMERIC_INTERVALS.keys()),
|
@@ -402,55 +395,93 @@ with demo:
|
|
402 |
visible=False,
|
403 |
)
|
404 |
search_bar.submit(
|
405 |
-
|
406 |
[
|
407 |
hidden_leaderboard_table_for_search,
|
408 |
leaderboard_table,
|
|
|
|
|
|
|
|
|
|
|
409 |
search_bar,
|
410 |
],
|
411 |
leaderboard_table,
|
412 |
)
|
413 |
shown_columns.change(
|
414 |
-
|
415 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
leaderboard_table,
|
417 |
-
queue=
|
418 |
)
|
419 |
filter_columns_type.change(
|
420 |
-
|
421 |
[
|
422 |
hidden_leaderboard_table_for_search,
|
423 |
leaderboard_table,
|
|
|
424 |
filter_columns_type,
|
|
|
425 |
filter_columns_size,
|
426 |
deleted_models_visibility,
|
|
|
427 |
],
|
428 |
leaderboard_table,
|
429 |
-
queue=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
)
|
431 |
filter_columns_size.change(
|
432 |
-
|
433 |
[
|
434 |
hidden_leaderboard_table_for_search,
|
435 |
leaderboard_table,
|
|
|
436 |
filter_columns_type,
|
|
|
437 |
filter_columns_size,
|
438 |
deleted_models_visibility,
|
|
|
439 |
],
|
440 |
leaderboard_table,
|
441 |
-
queue=
|
442 |
)
|
443 |
deleted_models_visibility.change(
|
444 |
-
|
445 |
[
|
446 |
hidden_leaderboard_table_for_search,
|
447 |
leaderboard_table,
|
|
|
448 |
filter_columns_type,
|
|
|
449 |
filter_columns_size,
|
450 |
deleted_models_visibility,
|
|
|
451 |
],
|
452 |
leaderboard_table,
|
453 |
-
queue=
|
454 |
)
|
455 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
456 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
@@ -556,20 +587,6 @@ with demo:
|
|
556 |
submission_result,
|
557 |
)
|
558 |
|
559 |
-
with gr.Row():
|
560 |
-
refresh_button = gr.Button("Refresh")
|
561 |
-
refresh_button.click(
|
562 |
-
refresh,
|
563 |
-
inputs=[],
|
564 |
-
outputs=[
|
565 |
-
leaderboard_table,
|
566 |
-
finished_eval_table,
|
567 |
-
running_eval_table,
|
568 |
-
pending_eval_table,
|
569 |
-
],
|
570 |
-
api_name='refresh'
|
571 |
-
)
|
572 |
-
|
573 |
with gr.Row():
|
574 |
with gr.Accordion("📙 Citation", open=False):
|
575 |
citation_button = gr.Textbox(
|
@@ -589,6 +606,6 @@ with demo:
|
|
589 |
)
|
590 |
|
591 |
scheduler = BackgroundScheduler()
|
592 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
593 |
scheduler.start()
|
594 |
demo.queue(concurrency_count=40).launch()
|
|
|
222 |
|
223 |
|
224 |
# Basics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
def change_tab(query_param: str):
|
226 |
query_param = query_param.replace("'", '"')
|
227 |
query_param = json.loads(query_param)
|
|
|
233 |
|
234 |
|
235 |
# Searching and filtering
|
236 |
+
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
|
237 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
238 |
+
if query != "":
|
239 |
+
filtered_df = search_table(filtered_df, query)
|
240 |
+
df = select_columns(filtered_df, columns)
|
241 |
+
|
242 |
+
return df
|
|
|
|
|
|
|
243 |
|
244 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
245 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
246 |
|
247 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
248 |
always_here_cols = [
|
|
|
256 |
return filtered_df
|
257 |
|
258 |
NUMERIC_INTERVALS = {
|
259 |
+
"Unknown": pd.Interval(-1, 0, closed="right"),
|
260 |
+
"< 1.5B": pd.Interval(0, 1.5, closed="right"),
|
261 |
+
"~3B": pd.Interval(1.5, 5, closed="right"),
|
262 |
+
"~7B": pd.Interval(6, 11, closed="right"),
|
263 |
+
"~13B": pd.Interval(12, 15, closed="right"),
|
264 |
+
# "~35B": pd.Interval(16, 55, closed="right"),
|
265 |
+
# "60B+": pd.Interval(55, 10000, closed="right"),
|
266 |
}
|
267 |
|
268 |
def filter_models(
|
269 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
270 |
) -> pd.DataFrame:
|
|
|
|
|
271 |
# Show all models
|
272 |
if show_deleted:
|
273 |
+
filtered_df = df
|
274 |
else: # Show only still on the hub models
|
275 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
276 |
|
277 |
type_emoji = [t[0] for t in type_query]
|
278 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
279 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
280 |
|
281 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
282 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
283 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
284 |
+
filtered_df = filtered_df.loc[mask]
|
285 |
|
286 |
return filtered_df
|
287 |
|
|
|
295 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
296 |
with gr.Row():
|
297 |
with gr.Column():
|
298 |
+
with gr.Row():
|
299 |
+
search_bar = gr.Textbox(
|
300 |
+
placeholder=" 🔍 Search for your model and press ENTER...",
|
301 |
+
show_label=False,
|
302 |
+
elem_id="search-bar",
|
303 |
+
)
|
304 |
with gr.Row():
|
305 |
shown_columns = gr.CheckboxGroup(
|
306 |
choices=[
|
|
|
334 |
value=True, label="👀 Show gated/private/deleted models", interactive=True
|
335 |
)
|
336 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
337 |
with gr.Box(elem_id="box-filter"):
|
338 |
filter_columns_type = gr.CheckboxGroup(
|
339 |
label="Model types",
|
|
|
352 |
interactive=True,
|
353 |
elem_id="filter-columns-type",
|
354 |
)
|
355 |
+
filter_columns_precision = gr.CheckboxGroup(
|
356 |
+
label="Precision",
|
357 |
+
choices=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
358 |
+
value=["torch.float16"], #, "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
|
359 |
+
interactive=False,
|
360 |
+
elem_id="filter-columns-precision",
|
361 |
+
)
|
362 |
filter_columns_size = gr.CheckboxGroup(
|
363 |
label="Model sizes",
|
364 |
choices=list(NUMERIC_INTERVALS.keys()),
|
|
|
395 |
visible=False,
|
396 |
)
|
397 |
search_bar.submit(
|
398 |
+
update_table,
|
399 |
[
|
400 |
hidden_leaderboard_table_for_search,
|
401 |
leaderboard_table,
|
402 |
+
shown_columns,
|
403 |
+
filter_columns_type,
|
404 |
+
filter_columns_precision,
|
405 |
+
filter_columns_size,
|
406 |
+
deleted_models_visibility,
|
407 |
search_bar,
|
408 |
],
|
409 |
leaderboard_table,
|
410 |
)
|
411 |
shown_columns.change(
|
412 |
+
update_table,
|
413 |
+
[
|
414 |
+
hidden_leaderboard_table_for_search,
|
415 |
+
leaderboard_table,
|
416 |
+
shown_columns,
|
417 |
+
filter_columns_type,
|
418 |
+
filter_columns_precision,
|
419 |
+
filter_columns_size,
|
420 |
+
deleted_models_visibility,
|
421 |
+
search_bar,
|
422 |
+
],
|
423 |
leaderboard_table,
|
424 |
+
queue=True,
|
425 |
)
|
426 |
filter_columns_type.change(
|
427 |
+
update_table,
|
428 |
[
|
429 |
hidden_leaderboard_table_for_search,
|
430 |
leaderboard_table,
|
431 |
+
shown_columns,
|
432 |
filter_columns_type,
|
433 |
+
filter_columns_precision,
|
434 |
filter_columns_size,
|
435 |
deleted_models_visibility,
|
436 |
+
search_bar,
|
437 |
],
|
438 |
leaderboard_table,
|
439 |
+
queue=True,
|
440 |
+
)
|
441 |
+
filter_columns_precision.change(
|
442 |
+
update_table,
|
443 |
+
[
|
444 |
+
hidden_leaderboard_table_for_search,
|
445 |
+
leaderboard_table,
|
446 |
+
shown_columns,
|
447 |
+
filter_columns_type,
|
448 |
+
filter_columns_precision,
|
449 |
+
filter_columns_size,
|
450 |
+
deleted_models_visibility,
|
451 |
+
search_bar,
|
452 |
+
],
|
453 |
+
leaderboard_table,
|
454 |
+
queue=True,
|
455 |
)
|
456 |
filter_columns_size.change(
|
457 |
+
update_table,
|
458 |
[
|
459 |
hidden_leaderboard_table_for_search,
|
460 |
leaderboard_table,
|
461 |
+
shown_columns,
|
462 |
filter_columns_type,
|
463 |
+
filter_columns_precision,
|
464 |
filter_columns_size,
|
465 |
deleted_models_visibility,
|
466 |
+
search_bar,
|
467 |
],
|
468 |
leaderboard_table,
|
469 |
+
queue=True,
|
470 |
)
|
471 |
deleted_models_visibility.change(
|
472 |
+
update_table,
|
473 |
[
|
474 |
hidden_leaderboard_table_for_search,
|
475 |
leaderboard_table,
|
476 |
+
shown_columns,
|
477 |
filter_columns_type,
|
478 |
+
filter_columns_precision,
|
479 |
filter_columns_size,
|
480 |
deleted_models_visibility,
|
481 |
+
search_bar,
|
482 |
],
|
483 |
leaderboard_table,
|
484 |
+
queue=True,
|
485 |
)
|
486 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
487 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
587 |
submission_result,
|
588 |
)
|
589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
with gr.Row():
|
591 |
with gr.Accordion("📙 Citation", open=False):
|
592 |
citation_button = gr.Textbox(
|
|
|
606 |
)
|
607 |
|
608 |
scheduler = BackgroundScheduler()
|
609 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
610 |
scheduler.start()
|
611 |
demo.queue(concurrency_count=40).launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
aiofiles==23.1.0
|
2 |
aiohttp==3.8.4
|
3 |
aiosignal==1.3.1
|
@@ -19,8 +20,8 @@ filelock==3.11.0
|
|
19 |
fonttools==4.39.3
|
20 |
frozenlist==1.3.3
|
21 |
fsspec==2023.4.0
|
22 |
-
gradio==3.
|
23 |
-
|
24 |
h11==0.14.0
|
25 |
httpcore==0.17.0
|
26 |
httpx==0.24.0
|
@@ -59,7 +60,7 @@ sniffio==1.3.0
|
|
59 |
starlette==0.26.1
|
60 |
toolz==0.12.0
|
61 |
tqdm==4.65.0
|
62 |
-
transformers==4.
|
63 |
typing_extensions==4.5.0
|
64 |
tzdata==2023.3
|
65 |
tzlocal==4.3
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
aiofiles==23.1.0
|
3 |
aiohttp==3.8.4
|
4 |
aiosignal==1.3.1
|
|
|
20 |
fonttools==4.39.3
|
21 |
frozenlist==1.3.3
|
22 |
fsspec==2023.4.0
|
23 |
+
gradio==3.43.2
|
24 |
+
gradio-client==0.5.0
|
25 |
h11==0.14.0
|
26 |
httpcore==0.17.0
|
27 |
httpx==0.24.0
|
|
|
60 |
starlette==0.26.1
|
61 |
toolz==0.12.0
|
62 |
tqdm==4.65.0
|
63 |
+
transformers==4.33.1
|
64 |
typing_extensions==4.5.0
|
65 |
tzdata==2023.3
|
66 |
tzlocal==4.3
|
src/display_models/get_model_metadata.py
CHANGED
@@ -2,11 +2,14 @@ import glob
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
|
|
5 |
from typing import List
|
6 |
|
7 |
import huggingface_hub
|
8 |
from huggingface_hub import HfApi
|
9 |
from tqdm import tqdm
|
|
|
|
|
10 |
|
11 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
12 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
@@ -16,27 +19,53 @@ api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
|
16 |
|
17 |
|
18 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
for model_data in tqdm(leaderboard_data):
|
20 |
model_name = model_data["model_name_for_query"]
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
31 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def get_model_license(model_info):
|
36 |
try:
|
37 |
return model_info.cardData["license"]
|
38 |
except Exception:
|
39 |
-
return
|
40 |
|
41 |
|
42 |
def get_model_likes(model_info):
|
@@ -52,11 +81,17 @@ def get_model_size(model_name, model_info):
|
|
52 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
53 |
except AttributeError:
|
54 |
try:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
5 |
+
import pickle
|
6 |
from typing import List
|
7 |
|
8 |
import huggingface_hub
|
9 |
from huggingface_hub import HfApi
|
10 |
from tqdm import tqdm
|
11 |
+
from transformers import AutoModel, AutoConfig
|
12 |
+
from accelerate import init_empty_weights
|
13 |
|
14 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
15 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
|
19 |
|
20 |
|
21 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
22 |
+
# load cache from disk
|
23 |
+
try:
|
24 |
+
with open("model_info_cache.pkl", "rb") as f:
|
25 |
+
model_info_cache = pickle.load(f)
|
26 |
+
except (EOFError, FileNotFoundError):
|
27 |
+
model_info_cache = {}
|
28 |
+
try:
|
29 |
+
with open("model_size_cache.pkl", "rb") as f:
|
30 |
+
model_size_cache = pickle.load(f)
|
31 |
+
except (EOFError, FileNotFoundError):
|
32 |
+
model_size_cache = {}
|
33 |
+
|
34 |
for model_data in tqdm(leaderboard_data):
|
35 |
model_name = model_data["model_name_for_query"]
|
36 |
+
|
37 |
+
if model_name in model_info_cache:
|
38 |
+
model_info = model_info_cache[model_name]
|
39 |
+
else:
|
40 |
+
try:
|
41 |
+
model_info = api.model_info(model_name)
|
42 |
+
model_info_cache[model_name] = model_info
|
43 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
44 |
+
print("Repo not found!", model_name)
|
45 |
+
model_data[AutoEvalColumn.license.name] = None
|
46 |
+
model_data[AutoEvalColumn.likes.name] = None
|
47 |
+
if model_name not in model_size_cache:
|
48 |
+
model_size_cache[model_name] = get_model_size(model_name, None)
|
49 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
50 |
|
51 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
52 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
53 |
+
if model_name not in model_size_cache:
|
54 |
+
model_size_cache[model_name] = get_model_size(model_name, model_info)
|
55 |
+
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
56 |
+
|
57 |
+
# save cache to disk in pickle format
|
58 |
+
with open("model_info_cache.pkl", "wb") as f:
|
59 |
+
pickle.dump(model_info_cache, f)
|
60 |
+
with open("model_size_cache.pkl", "wb") as f:
|
61 |
+
pickle.dump(model_size_cache, f)
|
62 |
|
63 |
|
64 |
def get_model_license(model_info):
|
65 |
try:
|
66 |
return model_info.cardData["license"]
|
67 |
except Exception:
|
68 |
+
return "?"
|
69 |
|
70 |
|
71 |
def get_model_likes(model_info):
|
|
|
81 |
return round(model_info.safetensors["total"] / 1e9, 3)
|
82 |
except AttributeError:
|
83 |
try:
|
84 |
+
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
85 |
+
with init_empty_weights():
|
86 |
+
model = AutoModel.from_config(config, trust_remote_code=False)
|
87 |
+
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
88 |
+
except (EnvironmentError, ValueError): # model config not found, likely private
|
89 |
+
try:
|
90 |
+
size_match = re.search(size_pattern, model_name.lower())
|
91 |
+
size = size_match.group(0)
|
92 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
93 |
+
except AttributeError:
|
94 |
+
return 0
|
95 |
|
96 |
|
97 |
def get_model_type(leaderboard_data: List[dict]):
|
src/display_models/model_metadata_flags.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
# Models which have been flagged by users as being problematic for a reason or another
|
2 |
# (Model name to forum discussion link)
|
3 |
FLAGGED_MODELS = {
|
4 |
-
"Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
|
5 |
-
"deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
|
6 |
-
"Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
|
7 |
-
"Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
|
8 |
-
"TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
|
9 |
-
"gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
|
10 |
}
|
11 |
|
12 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
13 |
DO_NOT_SUBMIT_MODELS = [
|
14 |
-
"Voicelab/trurl-2-13b", # trained on MMLU
|
15 |
]
|
|
|
1 |
# Models which have been flagged by users as being problematic for a reason or another
|
2 |
# (Model name to forum discussion link)
|
3 |
FLAGGED_MODELS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
}
|
5 |
|
6 |
# Models which have been requested by orgs to not be submitted on the leaderboard
|
7 |
DO_NOT_SUBMIT_MODELS = [
|
|
|
8 |
]
|
src/display_models/read_results.py
CHANGED
@@ -87,11 +87,11 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
|
87 |
if len(model_split) == 1:
|
88 |
org = None
|
89 |
model = model_split[0]
|
90 |
-
result_key = f"{model}_{
|
91 |
else:
|
92 |
org = model_split[0]
|
93 |
model = model_split[1]
|
94 |
-
result_key = f"{org}_{model}_{
|
95 |
|
96 |
eval_results = []
|
97 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
|
|
87 |
if len(model_split) == 1:
|
88 |
org = None
|
89 |
model = model_split[0]
|
90 |
+
result_key = f"{model}_{precision}"
|
91 |
else:
|
92 |
org = model_split[0]
|
93 |
model = model_split[1]
|
94 |
+
result_key = f"{org}_{model}_{precision}"
|
95 |
|
96 |
eval_results = []
|
97 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
src/load_from_hub.py
CHANGED
@@ -80,11 +80,8 @@ def get_leaderboard_df(
|
|
80 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
81 |
df = df[cols].round(decimals=2)
|
82 |
|
83 |
-
|
84 |
# filter out if any of the benchmarks have not been produced
|
85 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
86 |
-
|
87 |
-
print(df)
|
88 |
return df
|
89 |
|
90 |
|
@@ -125,7 +122,7 @@ def get_evaluation_queue_df(
|
|
125 |
|
126 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
127 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
128 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
129 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
130 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
131 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
|
|
80 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
81 |
df = df[cols].round(decimals=2)
|
82 |
|
|
|
83 |
# filter out if any of the benchmarks have not been produced
|
84 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
|
|
85 |
return df
|
86 |
|
87 |
|
|
|
122 |
|
123 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
124 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
125 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
126 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
127 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
128 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|