Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
class Tasks(Enum): | |
gpqa = Task("ko_gpqa_diamond_zeroshot", "acc_norm,none", "Ko-GPQA") | |
winogrande = Task("ko_winogrande", "acc,none", "Ko-Winogrande") | |
gsm8k = Task("ko_gsm8k", "exact_match,strict-match", "Ko-GSM8k") | |
eqBench = Task("ko_eqbench", "eqbench,none", "Ko-EQ Bench") | |
instFollow = Task("ko_ifeval", "strict_acc,none", "Ko-IFEval") | |
korNatCka = Task("kornat_common", "acc_norm,none", "KorNAT-CKA") | |
korNatSva = Task("kornat_social", "A-SVA,none", "KorNAT-SVA") | |
harmlessness = Task("kornat_harmless", "acc_norm,none", "Ko-Harmlessness") | |
helpfulness = Task("kornat_helpful", "acc_norm,none", "Ko-Helpfulness") | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
dummy: bool = False | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
#Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) | |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, False)]) | |
# Dummy column for the search bar (hidden by the custom CSS) | |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
# Define the human baselines | |
human_baseline_row = { | |
AutoEvalColumn.model.name: "<p>Human performance</p>", | |
} | |
class ModelDetails: | |
name: str | |
symbol: str = "" # emoji, only for the model type | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="π’") | |
CPT = ModelDetails(name="continuously pretrained", symbol="π©") | |
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ") | |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬") | |
merges = ModelDetails(name="base merges and moerges", symbol="π€") | |
Unknown = ModelDetails(name="other", symbol="β") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(m_type): | |
if any([k for k in m_type if k in ["fine-tuned","πΆ", "finetuned"]]): | |
return ModelType.FT | |
if "continuously pretrained" in m_type or "π©" in m_type: | |
return ModelType.CPT | |
if "pretrained" in m_type or "π’" in m_type: | |
return ModelType.PT | |
if any([k in m_type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): | |
return ModelType.chat | |
if "merge" in m_type or "π€" in m_type: | |
return ModelType.merges | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
qt_8bit = ModelDetails("8bit") | |
qt_4bit = ModelDetails("4bit") | |
qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["8bit"]: | |
return Precision.qt_8bit | |
if precision in ["4bit"]: | |
return Precision.qt_4bit | |
if precision in ["GPTQ", "None"]: | |
return Precision.qt_GPTQ | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"Unknown": pd.Interval(-1, 0, closed="right"), | |
"0~3B": pd.Interval(0, 3, closed="right"), | |
"3~7B": pd.Interval(3, 7.3, closed="right"), | |
"7~13B": pd.Interval(7.3, 13, closed="right"), | |
"13~35B": pd.Interval(13, 35, closed="right"), | |
"35~60B": pd.Interval(35, 60, closed="right"), | |
"60B+": pd.Interval(60, 10000, closed="right"), | |
} |