|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
class Sum_depth(nn.Module): |
|
def __init__(self): |
|
super(Sum_depth, self).__init__() |
|
self.sum_conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) |
|
sum_k = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) |
|
|
|
sum_k = torch.from_numpy(sum_k).float().view(1, 1, 3, 3) |
|
self.sum_conv.weight = nn.Parameter(sum_k) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, x): |
|
out = self.sum_conv(x) |
|
out = out.contiguous().view(-1, 1, x.size(2), x.size(3)) |
|
|
|
return out |
|
|
|
|