import torch import torch.nn as nn import numpy as np class Sum_depth(nn.Module): def __init__(self): super(Sum_depth, self).__init__() self.sum_conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) sum_k = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) sum_k = torch.from_numpy(sum_k).float().view(1, 1, 3, 3) self.sum_conv.weight = nn.Parameter(sum_k) for param in self.parameters(): param.requires_grad = False def forward(self, x): out = self.sum_conv(x) out = out.contiguous().view(-1, 1, x.size(2), x.size(3)) return out