iris_log_reg_model / iris_train.py
Uday Chitragar
stable
1cfefea
raw
history blame contribute delete
752 Bytes
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# Load Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define model
model = make_pipeline(StandardScaler(), LogisticRegression(max_iter=1000))
# Train model
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
# Evaluate model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)