tuongtn commited on
Commit
d0663cf
·
verified ·
1 Parent(s): 81917a3
Files changed (1) hide show
  1. app.py +199 -185
app.py CHANGED
@@ -1,196 +1,210 @@
1
- import os
2
  import gradio as gr
 
 
 
3
  import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
  )
 
 
 
 
 
 
 
 
 
 
160
 
161
- gr.LoginButton()
 
 
 
 
 
 
 
 
 
162
 
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  )
173
 
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
1
  import gradio as gr
2
+ from datasets import load_dataset, Dataset
3
+ from datetime import datetime
4
+ from datetime import date
5
  import requests
6
+ import tempfile
7
+ import asyncio
8
+ from huggingface_hub import upload_file
9
+ from functools import partial
10
+ import io
11
+ import os
12
+ from PIL import Image, ImageDraw, ImageFont
13
+ from huggingface_hub import login
14
+
15
+ login(token=os.environ["HUGGINGFACE_TOKEN"])
16
+
17
+ # Constants
18
+ SCORES_DATASET = "agents-course/unit4-students-scores"
19
+ CERTIFICATES_DATASET = "agents-course/course-certificates-of-excellence"
20
+ THRESHOLD_SCORE = 30
21
+ CERTIFYING_ORG_LINKEDIN_ID = os.getenv("CERTIFYING_ORG_LINKEDIN_ID", "000000")
22
+ COURSE_TITLE = os.getenv("COURSE_TITLE", "Hugging Face Agents Course")
23
+
24
+ # Function to check user score
25
+ def check_user_score(username):
26
+ score_data = load_dataset(SCORES_DATASET, split="train", download_mode="force_redownload")
27
+ matches = [row for row in score_data if row["username"] == username]
28
+ return matches[0] if matches else None
29
+
30
+ # Function to check if certificate entry exists
31
+ def has_certificate_entry(username):
32
+ cert_data = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
33
+ print(username)
34
+ return any(row["username"] == username for row in cert_data)
35
+
36
+ # Function to add certificate entry
37
+ def add_certificate_entry(username, name, score):
38
+ # Load current dataset
39
+ ds = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
40
+
41
+ # Remove any existing entry with the same username
42
+ filtered_rows = [row for row in ds if row["username"] != username]
43
+
44
+ # Append the updated/new entry
45
+ new_entry = {
46
+ "username": username,
47
+ "score": score,
48
+ "timestamp": datetime.now().isoformat()
49
+ }
50
+ filtered_rows.append(new_entry)
51
+
52
+ # Rebuild dataset and push
53
+ updated_ds = Dataset.from_list(filtered_rows)
54
+ updated_ds.push_to_hub(CERTIFICATES_DATASET)
55
+
56
+ # Function to generate certificate PDF
57
+ def generate_certificate(name, score):
58
+ """Generate certificate image and PDF."""
59
+ certificate_path = os.path.join(
60
+ os.path.dirname(__file__), "templates", "certificate.png"
61
+ )
62
+ im = Image.open(certificate_path)
63
+ d = ImageDraw.Draw(im)
64
+
65
+ name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
66
+ date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
67
+
68
+ name = name.title()
69
+ d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
70
+
71
+ d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
72
+
73
+ pdf = im.convert("RGB")
74
+ pdf.save("certificate.pdf")
75
+
76
+ return im, "certificate.pdf"
77
+
78
+ async def upload_certificate_to_hub(username: str, certificate_img) -> str:
79
+ """Upload certificate to the dataset hub and return the URL asynchronously."""
80
+ # Save image to temporary file
81
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
82
+ certificate_img.save(tmp.name)
83
+
84
  try:
85
+ # Run upload in a thread pool since upload_file is blocking
86
+ loop = asyncio.get_event_loop()
87
+ upload_func = partial(
88
+ upload_file,
89
+ path_or_fileobj=tmp.name,
90
+ path_in_repo=f"certificates/{username}/{date.today()}.png",
91
+ repo_id="agents-course/final-certificates",
92
+ repo_type="dataset",
93
+ token=os.getenv("HF_TOKEN"),
94
+ )
95
+ await loop.run_in_executor(None, upload_func)
96
+
97
+ # Construct the URL to the image
98
+ cert_url = (
99
+ f"https://huggingface.co/datasets/agents-course/final-certificates/"
100
+ f"resolve/main/certificates/{username}/{date.today()}.png"
101
+ )
102
+
103
+ # Clean up temp file
104
+ os.unlink(tmp.name)
105
+ return cert_url
106
+
107
  except Exception as e:
108
+ print(f"Error uploading certificate: {e}")
109
+ os.unlink(tmp.name)
110
+ return None
111
+
112
+ def create_linkedin_button(username: str, cert_url: str | None) -> str:
113
+ """Create LinkedIn 'Add to Profile' button HTML."""
114
+ current_year = date.today().year
115
+ current_month = date.today().month
116
+
117
+ # Use the dataset certificate URL if available, otherwise fallback to default
118
+ certificate_url = cert_url or "https://huggingface.co/agents-course-finishers"
119
+
120
+ linkedin_params = {
121
+ "startTask": "CERTIFICATION_NAME",
122
+ "name": COURSE_TITLE,
123
+ "organizationName": "Hugging Face",
124
+ "organizationId": CERTIFYING_ORG_LINKEDIN_ID,
125
+ "issueYear": str(current_year),
126
+ "issueMonth": str(current_month),
127
+ "certUrl": certificate_url,
128
+ "certId": username, # Using username as cert ID
129
+ }
130
+
131
+ # Build the LinkedIn button URL
132
+ base_url = "https://www.linkedin.com/profile/add?"
133
+ params = "&".join(
134
+ f"{k}={requests.utils.quote(v)}" for k, v in linkedin_params.items()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  )
136
+ button_url = base_url + params
137
+
138
+ message = f"""
139
+ <a href="{button_url}" target="_blank" style="display: block; margin: 0 auto; width: fit-content;">
140
+ <img src="https://download.linkedin.com/desktop/add2profile/buttons/en_US.png"
141
+ alt="LinkedIn Add to Profile button"
142
+ style="height: 40px; width: auto; display: block;" />
143
+ </a>
144
+ """
145
+ return message
146
 
147
+ # Main function to handle certificate generation
148
+ async def handle_certificate(name, profile: gr.OAuthProfile):
149
+ if profile is None:
150
+ return "You must be logged in with your Hugging Face account.", None
151
+
152
+ username = profile.username
153
+ user_score = check_user_score(username)
154
+
155
+ if not user_score:
156
+ return "You need to complete Unit 4 first.", None, None, None
157
 
158
+ score = user_score["score"]
159
 
160
+ if score < THRESHOLD_SCORE:
161
+ return f"Your score is {score}. You need at least {THRESHOLD_SCORE} to pass.", None, None
 
162
 
163
+ certificate_image, certificate_pdf = generate_certificate(name, score)
164
+ add_certificate_entry(username, name, score)
165
+
166
+ # Start certificate upload asynchronously
167
+ gr.Info("Uploading your certificate...")
168
+ cert_url = await upload_certificate_to_hub(username, certificate_image)
169
+
170
+ if cert_url is None:
171
+ gr.Warning("Certificate upload failed, but you still passed!")
172
+ cert_url = "https://huggingface.co/agents-course"
173
+
174
+ linkedin_button = create_linkedin_button(username, cert_url)
175
+ return "Congratulations! Here's your certificate:", certificate_image, gr.update(value=linkedin_button, visible=True), certificate_pdf
176
+
177
+
178
+ # Gradio interface
179
+ with gr.Blocks() as demo:
180
+ gr.Markdown("# 🎓 Agents Course - Get Your Final Certificate")
181
+ gr.Markdown("Welcome! Follow the steps below to receive your official certificate:")
182
+ gr.Markdown("⚠️ **Note**: Due to high demand, you might experience occasional bugs. If something doesn't work, please try again after a moment!")
183
+
184
+ with gr.Group():
185
+ gr.Markdown("## ✅ How it works")
186
+ gr.Markdown("""
187
+ 1. **Sign in** with your Hugging Face account using the button below.
188
+ 2. **Enter your full name** (this will appear on the certificate).
189
+ 3. Click **'Get My Certificate'** to check your score and download your certificate.
190
+ """)
191
+ gr.Markdown("---")
192
+ gr.Markdown("📝 **Note**: You must have completed [Unit 4](https://huggingface.co/learn/agents-course/unit4/introduction) and your Agent must have scored **above 30** to get your certificate.")
193
+
194
+ gr.LoginButton()
195
+ with gr.Row():
196
+ name_input = gr.Text(label="Enter your name (this will appear on the certificate)")
197
+ generate_btn = gr.Button("Get my certificate")
198
+ output_text = gr.Textbox(label="Result")
199
+ linkedin_btn = gr.HTML(visible=False)
200
+
201
+ cert_image = gr.Image(label="Your Certificate")
202
+ cert_file = gr.File(label="Download Certificate (PDF)", file_types=[".pdf"])
203
+
204
+ generate_btn.click(
205
+ fn=handle_certificate,
206
+ inputs=[name_input],
207
+ outputs=[output_text, cert_image, linkedin_btn, cert_file]
208
  )
209
 
210
+ demo.launch()