|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
import threading |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.evaluator.run_evaluator import evaluator_runner |
|
|
|
def restart_space(): |
|
try: |
|
print("Restarting space...") |
|
space_runtime = API.restart_space(repo_id=REPO_ID,token=TOKEN) |
|
print(f"Space restarted successfully: {space_runtime}") |
|
except Exception as e: |
|
print(f"Error restarting space: {str(e)}") |
|
try: |
|
print("Attempting to download datasets again...") |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, force_download=True |
|
) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, force_download=True |
|
) |
|
except Exception as download_error: |
|
print(f"Error downloading datasets: {str(download_error)}") |
|
|
|
|
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn())], |
|
select_columns=SelectColumns( |
|
default_selection=[c.name for c in fields(AutoEvalColumn()) if c.displayed_by_default], |
|
cant_deselect=[c.name for c in fields(AutoEvalColumn()) if c.never_hidden], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=[AutoEvalColumn().model.name, AutoEvalColumn().license.name], |
|
hide_columns=[c.name for c in fields(AutoEvalColumn()) if c.hidden], |
|
filter_columns=[ |
|
ColumnFilter(AutoEvalColumn().model_type.name, type="checkboxgroup", label="Model types"), |
|
ColumnFilter(AutoEvalColumn().precision.name, type="checkboxgroup", label="Precision"), |
|
ColumnFilter(AutoEvalColumn().params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"), |
|
ColumnFilter(AutoEvalColumn().still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True), |
|
], |
|
bool_checkboxgroup_label="Hide models", |
|
interactive=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
print(f"\n=== Starting space initialization ===") |
|
|
|
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}") |
|
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}") |
|
print(f"QUEUE_REPO: {QUEUE_REPO}") |
|
print(f"RESULTS_REPO: {RESULTS_REPO}") |
|
print(f"TOKEN: {bool(TOKEN)}") |
|
|
|
print("\n=== Downloading request files ===") |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN,force_download=True |
|
) |
|
|
|
print("\n=== Downloading results files ===") |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN,force_download=True |
|
) |
|
|
|
print("\n=== Loading leaderboard data ===") |
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
print(f"Leaderboard DataFrame shape: {LEADERBOARD_DF.shape if LEADERBOARD_DF is not None else 'None'}") |
|
|
|
print("\n=== Loading evaluation queue data ===") |
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
print(f"Finished eval queue shape: {finished_eval_queue_df.shape if finished_eval_queue_df is not None else 'None'}") |
|
print(f"Running eval queue shape: {running_eval_queue_df.shape if running_eval_queue_df is not None else 'None'}") |
|
print(f"Pending eval queue shape: {pending_eval_queue_df.shape if pending_eval_queue_df is not None else 'None'}") |
|
|
|
except Exception as e: |
|
print(f"\n=== Error during space initialization ===") |
|
print(f"Error: {str(e)}") |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
leaderboard = init_leaderboard(LEADERBOARD_DF) |
|
|
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(INTRODUCTION_TEXT) |
|
gr.Markdown(LLM_BENCHMARKS_TEXT) |
|
gr.Markdown(EVALUATION_QUEUE_TEXT) |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
print(running_eval_queue_df) |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
|
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=120) |
|
thread = threading.Thread(target=evaluator_runner) |
|
scheduler.start() |
|
thread.start() |
|
demo.queue(default_concurrency_limit=40).launch() |