|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
import gradio as grad |
|
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small") |
|
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small") |
|
|
|
|
|
def text2text_summary(para): |
|
initial_txt = para.strip().replace("\n","") |
|
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt") |
|
|
|
tkn_ids = mdl.generate( |
|
tkn_text, |
|
max_length=250, |
|
num_beams=5, |
|
repetition_penalty=2.5, |
|
|
|
early_stopping=True |
|
) |
|
|
|
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True) |
|
return response |
|
|
|
para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph") |
|
out=grad.Textbox(lines=1, label="Summary") |
|
grad.Interface(text2text_summary, inputs=para, outputs=out).launch() |
|
|