Upload 2 files
Browse files- app.py +25 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
2 |
+
import gradio as grad
|
3 |
+
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
4 |
+
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
5 |
+
|
6 |
+
|
7 |
+
def text2text_summary(para):
|
8 |
+
initial_txt = para.strip().replace("\n","")
|
9 |
+
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
|
10 |
+
|
11 |
+
tkn_ids = mdl.generate(
|
12 |
+
tkn_text,
|
13 |
+
max_length=250,
|
14 |
+
num_beams=5,
|
15 |
+
repetition_penalty=2.5,
|
16 |
+
|
17 |
+
early_stopping=True
|
18 |
+
)
|
19 |
+
|
20 |
+
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
|
21 |
+
return response
|
22 |
+
|
23 |
+
para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
|
24 |
+
out=grad.Textbox(lines=1, label="Summary")
|
25 |
+
grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
transformers[sentencepiece]
|