Sushil Thapa
Optimize submissions
315f4fc
import os
import gradio as gr
import requests
import asyncio
import threading
import time
import json
from typing import Dict, List, Optional, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import pandas as pd
from smolagents import GradioUI, CodeAgent, HfApiModel, ApiModel, InferenceClientModel, LiteLLMModel, ToolCallingAgent, Tool, DuckDuckGoSearchTool
from agent import JarvisAgent
# Import configuration manager
try:
from config import config, check_required_keys_interactive
INTERACTIVE_MODE = True
except ImportError:
INTERACTIVE_MODE = False
print("⚠️ config.py not found - running with basic functionality")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_FILE = "answers_cache.json"
MAX_WORKERS = 3 # Parallel processing limit
BATCH_SIZE = 5 # Process questions in batches
class AnswerCache:
"""Simple file-based cache for answers"""
def __init__(self, cache_file: str = CACHE_FILE):
self.cache_file = cache_file
self._cache = self._load_cache()
def _load_cache(self) -> Dict:
try:
if os.path.exists(self.cache_file):
with open(self.cache_file, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error loading cache: {e}")
return {}
def _save_cache(self):
try:
with open(self.cache_file, 'w') as f:
json.dump(self._cache, f, indent=2)
except Exception as e:
print(f"Error saving cache: {e}")
def get(self, task_id: str) -> Optional[str]:
return self._cache.get(task_id)
def set(self, task_id: str, answer: str):
self._cache[task_id] = answer
self._save_cache()
def clear(self):
self._cache.clear()
self._save_cache()
class AgentRunner:
"""Manages agent execution with caching and async processing"""
def __init__(self):
self.cache = AnswerCache()
self.agent = None
self._progress_callback = None
def set_progress_callback(self, callback):
self._progress_callback = callback
def _update_progress(self, message: str, progress: float = None):
if self._progress_callback:
self._progress_callback(message, progress)
def initialize_agent(self) -> bool:
"""Initialize the agent with error handling"""
try:
if self.agent is None:
self.agent = JarvisAgent()
return True
except Exception as e:
self._update_progress(f"Error initializing agent: {e}")
return False
def process_question(self, task_id: str, question: str, use_cache: bool = True) -> Tuple[str, str]:
"""Process a single question with caching"""
try:
# Check cache first
if use_cache:
cached_answer = self.cache.get(task_id)
if cached_answer:
return task_id, cached_answer
# Process with agent
if not self.agent:
raise Exception("Agent not initialized")
answer = self.agent(question)
# Cache the result
if use_cache:
self.cache.set(task_id, answer)
return task_id, answer
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
return task_id, error_msg
def process_questions_parallel(self, questions_data: List[Dict], use_cache: bool = True) -> List[Dict]:
"""Process questions in parallel with progress updates"""
if not self.initialize_agent():
return []
total_questions = len(questions_data)
results = []
completed = 0
self._update_progress(f"Processing {total_questions} questions in parallel...", 0)
# Process in batches to avoid overwhelming the system
for batch_start in range(0, total_questions, BATCH_SIZE):
batch_end = min(batch_start + BATCH_SIZE, total_questions)
batch = questions_data[batch_start:batch_end]
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
# Submit batch to executor
future_to_question = {
executor.submit(
self.process_question,
item["task_id"],
item["question"],
use_cache
): item for item in batch
}
# Collect results as they complete
for future in as_completed(future_to_question):
item = future_to_question[future]
try:
task_id, answer = future.result()
results.append({
"task_id": task_id,
"question": item["question"],
"submitted_answer": answer
})
completed += 1
progress = (completed / total_questions) * 100
self._update_progress(
f"Completed {completed}/{total_questions} questions ({progress:.1f}%)",
progress
)
except Exception as e:
completed += 1
results.append({
"task_id": item["task_id"],
"question": item["question"],
"submitted_answer": f"PROCESSING ERROR: {e}"
})
return results
# Global runner instance
runner = AgentRunner()
def fetch_questions(api_url: str = DEFAULT_API_URL) -> Tuple[bool, List[Dict], str]:
"""Fetch questions from the API"""
questions_url = f"{api_url}/questions"
try:
print(f"Fetching questions from: {questions_url}")
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return False, [], "Fetched questions list is empty."
print(f"Fetched {len(questions_data)} questions.")
return True, questions_data, f"Successfully fetched {len(questions_data)} questions."
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching questions: {e}"
print(error_msg)
return False, [], error_msg
except Exception as e:
error_msg = f"Unexpected error fetching questions: {e}"
print(error_msg)
return False, [], error_msg
def submit_answers(username: str, answers: List[Dict], agent_code: str, api_url: str = DEFAULT_API_URL) -> Tuple[bool, str]:
"""Submit answers to the API"""
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": [{"task_id": item["task_id"], "submitted_answer": item["submitted_answer"]} for item in answers]
}
try:
print(f"Submitting {len(answers)} answers to: {submit_url}")
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return True, final_status
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return False, f"Submission Failed: {error_detail}"
except Exception as e:
return False, f"Submission Failed: {e}"
# State management for async operations
class AppState:
def __init__(self):
self.questions_data = []
self.processed_results = []
self.is_processing = False
self.is_submitting = False
app_state = AppState()
def process_questions_async(progress_callback, use_cache: bool = True):
"""Process questions asynchronously"""
if not app_state.questions_data:
return
if app_state.is_processing:
return
app_state.is_processing = True
def run_processing():
try:
runner.set_progress_callback(progress_callback)
app_state.processed_results = runner.process_questions_parallel(
app_state.questions_data,
use_cache
)
except Exception as e:
print(f"Error during processing: {e}")
finally:
app_state.is_processing = False
# Run in separate thread
thread = threading.Thread(target=run_processing, daemon=True)
thread.start()
def fetch_questions_action():
"""Fetch questions action"""
success, questions_data, message = fetch_questions()
if success:
app_state.questions_data = questions_data
return message, len(questions_data), gr.update(interactive=True), gr.update(interactive=True)
else:
return message, 0, gr.update(interactive=False), gr.update(interactive=False)
def get_cached_count():
"""Get count of cached answers"""
if not hasattr(runner, 'cache'):
return 0
return len(runner.cache._cache)
def clear_cache_action():
"""Clear the answer cache"""
runner.cache.clear()
return "Cache cleared successfully!", get_cached_count()
def get_results_table():
"""Get current results as DataFrame"""
if not app_state.processed_results:
return pd.DataFrame()
display_results = [
{
"Task ID": item["task_id"],
"Question": item["question"][:100] + "..." if len(item["question"]) > 100 else item["question"],
"Answer": item["submitted_answer"][:200] + "..." if len(item["submitted_answer"]) > 200 else item["submitted_answer"]
}
for item in app_state.processed_results
]
return pd.DataFrame(display_results)
def submit_answers_action(profile: gr.OAuthProfile | None):
"""Submit answers action"""
if not profile:
return "❌ Please log in to Hugging Face first."
if not app_state.processed_results:
return "❌ No processed results to submit. Please process questions first."
if app_state.is_submitting:
return "⏳ Already submitting..."
app_state.is_submitting = True
try:
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A"
success, message = submit_answers(username, app_state.processed_results, agent_code)
return message
finally:
app_state.is_submitting = False
# --- Gradio Interface ---
with gr.Blocks(title="Optimized GAIA Agent Runner") as demo:
gr.Markdown("# πŸš€ Optimized GAIA Agent Runner")
gr.Markdown("""
**Enhanced Features:**
- ⚑ **Parallel Processing**: Questions processed concurrently for faster execution
- πŸ’Ύ **Smart Caching**: Answers cached to avoid reprocessing
- πŸ“Š **Real-time Progress**: Live updates during processing
- πŸ”„ **Async Operations**: Non-blocking UI for better user experience
- πŸ›‘οΈ **Error Recovery**: Individual question failures don't stop the entire process
**Instructions:**
1. Log in to your Hugging Face account
2. Fetch questions from the server
3. Process questions (with progress tracking)
4. Submit your answers
""")
with gr.Row():
gr.LoginButton()
with gr.Tab("πŸ”„ Process Questions"):
with gr.Row():
with gr.Column(scale=2):
fetch_btn = gr.Button("πŸ“₯ Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", interactive=False)
question_count = gr.Number(label="Questions Loaded", value=0, interactive=False)
with gr.Column(scale=1):
cache_info = gr.Number(label="Cached Answers", value=get_cached_count(), interactive=False)
clear_cache_btn = gr.Button("πŸ—‘οΈ Clear Cache", variant="secondary")
with gr.Row():
with gr.Column():
use_cache = gr.Checkbox(label="Use Cache", value=True)
process_btn = gr.Button("⚑ Process Questions", variant="primary", interactive=False)
check_btn = gr.Button("πŸ”„ Check Progress", variant="secondary")
progress_text = gr.Textbox(label="Progress", interactive=False, lines=3)
results_table = gr.DataFrame(label="πŸ“Š Results Preview", wrap=True)
with gr.Tab("πŸ“€ Submit Results"):
with gr.Column():
submit_btn = gr.Button("πŸš€ Submit to GAIA", variant="primary", size="lg")
submit_status = gr.Textbox(label="Submission Status", interactive=False, lines=4)
# Event handlers
fetch_btn.click(
fn=fetch_questions_action,
outputs=[fetch_status, question_count, process_btn, submit_btn]
)
clear_cache_btn.click(
fn=clear_cache_action,
outputs=[fetch_status, cache_info]
)
def start_processing(use_cache_val):
if app_state.is_processing:
return "⏳ Already processing...", pd.DataFrame()
if not app_state.questions_data:
return "❌ No questions loaded. Please fetch questions first.", pd.DataFrame()
# Start processing in background
def run_processing():
app_state.is_processing = True
try:
app_state.processed_results = runner.process_questions_parallel(
app_state.questions_data,
use_cache_val
)
except Exception as e:
print(f"Error during processing: {e}")
finally:
app_state.is_processing = False
thread = threading.Thread(target=run_processing, daemon=True)
thread.start()
return "πŸ”„ Started processing questions in background...", pd.DataFrame()
def check_progress():
"""Check processing status and update table"""
table = get_results_table()
if app_state.is_processing:
progress_msg = "πŸ”„ Processing in progress... Click 'Check Progress' to update."
elif app_state.processed_results:
progress_msg = f"βœ… Completed {len(app_state.processed_results)} questions"
else:
progress_msg = "⏳ Ready to process questions"
return progress_msg, table
# Event handlers
process_btn.click(
fn=start_processing,
inputs=[use_cache],
outputs=[progress_text, results_table]
)
check_btn.click(
fn=check_progress,
outputs=[progress_text, results_table]
)
submit_btn.click(
fn=submit_answers_action,
outputs=[submit_status]
)
if __name__ == "__main__":
print("\n" + "="*50)
print("πŸš€ OPTIMIZED GAIA AGENT RUNNER")
print("="*50)
# Check API key configuration
if INTERACTIVE_MODE:
print("\nπŸ”§ Checking API Key Configuration...")
if not config.available_keys:
print("⚠️ No API keys configured. Running with limited functionality.")
print("πŸ’‘ For full features, set up API keys as shown above.")
else:
print("βœ… API keys configured - full functionality available")
# Environment info
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"βœ… SPACE_HOST: {space_host}")
print(f" 🌐 Runtime URL: https://{space_host}.hf.space")
if space_id:
print(f"βœ… SPACE_ID: {space_id}")
print(f" πŸ“ Repo: https://huggingface.co/spaces/{space_id}")
print(f"πŸ’Ύ Cache file: {CACHE_FILE}")
print(f"⚑ Max workers: {MAX_WORKERS}")
print(f"πŸ“¦ Batch size: {BATCH_SIZE}")
print("="*50 + "\n")
demo.launch(debug=True, share=False)