Spaces:
Paused
Paused
Commit
·
c4cd17d
1
Parent(s):
8fe2fce
Update app.py
Browse files
app.py
CHANGED
@@ -9,16 +9,17 @@ import copy
|
|
9 |
import json
|
10 |
|
11 |
with open("sdxl_loras.json", "r") as file:
|
|
|
12 |
sdxl_loras = [
|
13 |
-
|
14 |
-
item["image"],
|
15 |
-
item["title"],
|
16 |
-
item["repo"],
|
17 |
-
item["trigger_word"],
|
18 |
-
item["weights"],
|
19 |
-
item["is_compatible"],
|
20 |
-
|
21 |
-
for item in
|
22 |
]
|
23 |
|
24 |
saved_names = [
|
@@ -43,10 +44,10 @@ last_merged = False
|
|
43 |
|
44 |
|
45 |
def update_selection(selected_state: gr.SelectData):
|
46 |
-
lora_repo = sdxl_loras[selected_state.index][
|
47 |
-
instance_prompt = sdxl_loras[selected_state.index][
|
48 |
new_placeholder = "Type a prompt! This style works for all prompts without a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
49 |
-
weight_name = sdxl_loras[selected_state.index][
|
50 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
51 |
use_with_diffusers = f'''
|
52 |
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
|
@@ -93,52 +94,49 @@ def check_selected(selected_state):
|
|
93 |
if not selected_state:
|
94 |
raise gr.Error("You must select a LoRA")
|
95 |
|
96 |
-
def
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
raise gr.Error("You must select a LoRA")
|
101 |
-
|
102 |
-
if negative == "":
|
103 |
-
negative = None
|
104 |
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
120 |
else:
|
121 |
-
|
122 |
-
if ";" in weights_file:
|
123 |
-
weights_file, multiplier = weights_file.split(";")
|
124 |
-
multiplier = float(multiplier)
|
125 |
-
else:
|
126 |
-
multiplier = lora_scale
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
last_merged = True
|
140 |
|
141 |
-
|
|
|
142 |
prompt=prompt,
|
143 |
negative_prompt=negative,
|
144 |
width=768,
|
@@ -147,6 +145,26 @@ def run_lora(prompt, negative, lora_scale, selected_state):
|
|
147 |
guidance_scale=7.5,
|
148 |
cross_attention_kwargs=cross_attention_kwargs,
|
149 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
last_lora = repo_name
|
151 |
return image, gr.update(visible=True)
|
152 |
|
@@ -235,7 +253,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
235 |
inputs=[selected_state],
|
236 |
queue=False,
|
237 |
show_progress=False
|
238 |
-
).
|
239 |
fn=run_lora,
|
240 |
inputs=[prompt, negative, weight, selected_state],
|
241 |
outputs=[result, share_group],
|
@@ -245,7 +263,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
245 |
inputs=[selected_state],
|
246 |
queue=False,
|
247 |
show_progress=False
|
248 |
-
).
|
249 |
fn=run_lora,
|
250 |
inputs=[prompt, negative, weight, selected_state],
|
251 |
outputs=[result, share_group],
|
|
|
9 |
import json
|
10 |
|
11 |
with open("sdxl_loras.json", "r") as file:
|
12 |
+
data = json.load(file)
|
13 |
sdxl_loras = [
|
14 |
+
{
|
15 |
+
"image": item["image"],
|
16 |
+
"title": item["title"],
|
17 |
+
"repo": item["repo"],
|
18 |
+
"trigger_word": item["trigger_word"],
|
19 |
+
"weights": item["weights"],
|
20 |
+
"is_compatible": item["is_compatible"],
|
21 |
+
}
|
22 |
+
for item in data
|
23 |
]
|
24 |
|
25 |
saved_names = [
|
|
|
44 |
|
45 |
|
46 |
def update_selection(selected_state: gr.SelectData):
|
47 |
+
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
48 |
+
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
49 |
new_placeholder = "Type a prompt! This style works for all prompts without a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
50 |
+
weight_name = sdxl_loras[selected_state.index]["weights"]
|
51 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
52 |
use_with_diffusers = f'''
|
53 |
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
|
|
|
94 |
if not selected_state:
|
95 |
raise gr.Error("You must select a LoRA")
|
96 |
|
97 |
+
def get_cross_attention_kwargs(scale, repo_name, is_compatible):
|
98 |
+
if repo_name != last_lora and is_compatible:
|
99 |
+
return {"scale": scale}
|
100 |
+
return None
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
def load_lora_model(pipe, repo_name, full_path_lora, lora_scale):
|
103 |
+
if repo_name == last_lora:
|
104 |
+
return
|
105 |
|
106 |
+
if last_merged:
|
107 |
+
pipe = copy.deepcopy(original_pipe)
|
108 |
+
pipe.to(device)
|
109 |
+
else:
|
110 |
+
pipe.unload_lora_weights()
|
111 |
+
|
112 |
+
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
|
113 |
+
if is_compatible:
|
114 |
+
pipe.load_lora_weights(full_path_lora)
|
115 |
+
else:
|
116 |
+
load_incompatible_lora(pipe, full_path_lora, lora_scale)
|
117 |
+
|
118 |
+
def load_incompatible_lora(pipe, full_path_lora, lora_scale):
|
119 |
+
for weights_file in [full_path_lora]:
|
120 |
+
if ";" in weights_file:
|
121 |
+
weights_file, multiplier = weights_file.split(";")
|
122 |
+
multiplier = float(multiplier)
|
123 |
else:
|
124 |
+
multiplier = lora_scale
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
lora_model, weights_sd = lora.create_network_from_weights(
|
127 |
+
multiplier,
|
128 |
+
full_path_lora,
|
129 |
+
pipe.vae,
|
130 |
+
pipe.text_encoder,
|
131 |
+
pipe.unet,
|
132 |
+
for_inference=True,
|
133 |
+
)
|
134 |
+
lora_model.merge_to(
|
135 |
+
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
|
136 |
+
)
|
|
|
137 |
|
138 |
+
def generate_image(pipe, prompt, negative, cross_attention_kwargs):
|
139 |
+
return pipe(
|
140 |
prompt=prompt,
|
141 |
negative_prompt=negative,
|
142 |
width=768,
|
|
|
145 |
guidance_scale=7.5,
|
146 |
cross_attention_kwargs=cross_attention_kwargs,
|
147 |
).images[0]
|
148 |
+
|
149 |
+
def run_lora(prompt, negative, lora_scale, selected_state):
|
150 |
+
global last_lora, last_merged, pipe
|
151 |
+
|
152 |
+
if not selected_state:
|
153 |
+
raise gr.Error("You must select a LoRA")
|
154 |
+
|
155 |
+
if negative == "":
|
156 |
+
negative = None
|
157 |
+
|
158 |
+
repo_name = sdxl_loras[selected_state.index]["repo"]
|
159 |
+
full_path_lora = saved_names[selected_state.index]
|
160 |
+
|
161 |
+
cross_attention_kwargs = get_cross_attention_kwargs(
|
162 |
+
lora_scale, repo_name, sdxl_loras[selected_state.index]["is_compatible"])
|
163 |
+
|
164 |
+
load_lora_model(pipe, repo_name, full_path_lora, lora_scale)
|
165 |
+
|
166 |
+
image = generate_image(pipe, prompt, negative, cross_attention_kwargs)
|
167 |
+
|
168 |
last_lora = repo_name
|
169 |
return image, gr.update(visible=True)
|
170 |
|
|
|
253 |
inputs=[selected_state],
|
254 |
queue=False,
|
255 |
show_progress=False
|
256 |
+
).success(
|
257 |
fn=run_lora,
|
258 |
inputs=[prompt, negative, weight, selected_state],
|
259 |
outputs=[result, share_group],
|
|
|
263 |
inputs=[selected_state],
|
264 |
queue=False,
|
265 |
show_progress=False
|
266 |
+
).success(
|
267 |
fn=run_lora,
|
268 |
inputs=[prompt, negative, weight, selected_state],
|
269 |
outputs=[result, share_group],
|