Spaces:
Runtime error
Runtime error
<!--- | |
Copyright 2021 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
--> | |
# Audio classification examples | |
The following examples showcase how to fine-tune `Wav2Vec2` for audio classification using PyTorch. | |
Speech recognition models that have been pretrained in unsupervised fashion on audio data alone, | |
*e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html), | |
[HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html), | |
[XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), have shown to require only | |
very little annotated data to yield good performance on speech classification datasets. | |
## Single-GPU | |
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the π£οΈ [Keyword Spotting subset](https://huggingface.co/datasets/superb#ks) of the SUPERB dataset. | |
```bash | |
python run_audio_classification.py \ | |
--model_name_or_path facebook/wav2vec2-base \ | |
--dataset_name superb \ | |
--dataset_config_name ks \ | |
--output_dir wav2vec2-base-ft-keyword-spotting \ | |
--overwrite_output_dir \ | |
--remove_unused_columns False \ | |
--do_train \ | |
--do_eval \ | |
--fp16 \ | |
--learning_rate 3e-5 \ | |
--max_length_seconds 1 \ | |
--attention_mask False \ | |
--warmup_ratio 0.1 \ | |
--num_train_epochs 5 \ | |
--per_device_train_batch_size 32 \ | |
--gradient_accumulation_steps 4 \ | |
--per_device_eval_batch_size 32 \ | |
--dataloader_num_workers 4 \ | |
--logging_strategy steps \ | |
--logging_steps 10 \ | |
--evaluation_strategy epoch \ | |
--save_strategy epoch \ | |
--load_best_model_at_end True \ | |
--metric_for_best_model accuracy \ | |
--save_total_limit 3 \ | |
--seed 0 \ | |
--push_to_hub | |
``` | |
On a single V100 GPU (16GB), this script should run in ~14 minutes and yield accuracy of **98.26%**. | |
π See the results here: [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) | |
> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. | |
## Multi-GPU | |
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) for π **Language Identification** on the [CommonLanguage dataset](https://huggingface.co/datasets/anton-l/common_language). | |
```bash | |
python run_audio_classification.py \ | |
--model_name_or_path facebook/wav2vec2-base \ | |
--dataset_name common_language \ | |
--audio_column_name audio \ | |
--label_column_name language \ | |
--output_dir wav2vec2-base-lang-id \ | |
--overwrite_output_dir \ | |
--remove_unused_columns False \ | |
--do_train \ | |
--do_eval \ | |
--fp16 \ | |
--learning_rate 3e-4 \ | |
--max_length_seconds 16 \ | |
--attention_mask False \ | |
--warmup_ratio 0.1 \ | |
--num_train_epochs 10 \ | |
--per_device_train_batch_size 8 \ | |
--gradient_accumulation_steps 4 \ | |
--per_device_eval_batch_size 1 \ | |
--dataloader_num_workers 8 \ | |
--logging_strategy steps \ | |
--logging_steps 10 \ | |
--evaluation_strategy epoch \ | |
--save_strategy epoch \ | |
--load_best_model_at_end True \ | |
--metric_for_best_model accuracy \ | |
--save_total_limit 3 \ | |
--seed 0 \ | |
--push_to_hub | |
``` | |
On 4 V100 GPUs (16GB), this script should run in ~1 hour and yield accuracy of **79.45%**. | |
π See the results here: [anton-l/wav2vec2-base-lang-id](https://huggingface.co/anton-l/wav2vec2-base-lang-id) | |
## Sharing your model on π€ Hub | |
0. If you haven't already, [sign up](https://huggingface.co/join) for a π€ account | |
1. Make sure you have `git-lfs` installed and git set up. | |
```bash | |
$ apt install git-lfs | |
``` | |
2. Log in with your HuggingFace account credentials using `huggingface-cli` | |
```bash | |
$ huggingface-cli login | |
# ...follow the prompts | |
``` | |
3. When running the script, pass the following arguments: | |
```bash | |
python run_audio_classification.py \ | |
--push_to_hub \ | |
--hub_model_id <username/model_id> \ | |
... | |
``` | |
### Examples | |
The following table shows a couple of demonstration fine-tuning runs. | |
It has been verified that the script works for the following datasets: | |
- [SUPERB Keyword Spotting](https://huggingface.co/datasets/superb#ks) | |
- [Common Language](https://huggingface.co/datasets/common_language) | |
| Dataset | Pretrained Model | # transformer layers | Accuracy on eval | GPU setup | Training time | Fine-tuned Model & Logs | | |
|---------|------------------|----------------------|------------------|-----------|---------------|--------------------------| | |
| Keyword Spotting | [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) | 2 | 0.9706 | 1 V100 GPU | 11min | [here](https://huggingface.co/anton-l/distilhubert-ft-keyword-spotting) | | |
| Keyword Spotting | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.9826 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) | | |
| Keyword Spotting | [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) | 12 | 0.9819 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/hubert-base-ft-keyword-spotting) | | |
| Keyword Spotting | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 24 | 0.9757 | 1 V100 GPU | 15min | [here](https://huggingface.co/anton-l/sew-mid-100k-ft-keyword-spotting) | | |
| Common Language | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.7945 | 4 V100 GPUs | 1h10m | [here](https://huggingface.co/anton-l/wav2vec2-base-lang-id) | | |