Spaces:
Running
Running
jerpint
commited on
Commit
β’
e9698e9
0
Parent(s):
First commit
Browse files- Procfile +1 -0
- cfg.py +133 -0
- gradio_app.py +115 -0
- requirements.txt +2 -0
- setup.sh +2 -0
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: source setup.sh && python gradio_app.py
|
cfg.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
|
6 |
+
from buster.busterbot import Buster, BusterConfig
|
7 |
+
from buster.completers import ChatGPTCompleter, Completer, DocumentAnswerer
|
8 |
+
from buster.formatters.documents import DocumentsFormatter
|
9 |
+
from buster.formatters.prompts import PromptFormatter
|
10 |
+
from buster.retriever import Retriever, SQLiteRetriever
|
11 |
+
from buster.tokenizers import GPTTokenizer
|
12 |
+
from buster.validators import QuestionAnswerValidator, Validator
|
13 |
+
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
|
18 |
+
|
19 |
+
HUB_TOKEN = os.getenv("HUB_TOKEN")
|
20 |
+
REPO_ID = "jerpint/towardsai-buster-data"
|
21 |
+
HUB_DB_FILE = "documents.db"
|
22 |
+
logger.info(f"Downloading {HUB_DB_FILE} from hub...")
|
23 |
+
hf_hub_download(
|
24 |
+
repo_id=REPO_ID,
|
25 |
+
repo_type="dataset",
|
26 |
+
filename=HUB_DB_FILE,
|
27 |
+
token=HUB_TOKEN,
|
28 |
+
local_dir=".",
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
buster_cfg = BusterConfig(
|
33 |
+
validator_cfg={
|
34 |
+
"unknown_response_templates": [
|
35 |
+
"I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?",
|
36 |
+
],
|
37 |
+
"unknown_threshold": 0.85,
|
38 |
+
"embedding_model": "text-embedding-ada-002",
|
39 |
+
"use_reranking": True,
|
40 |
+
"invalid_question_response": "This question does not seem relevant to my current knowledge.",
|
41 |
+
"check_question_prompt": """You are an chatbot answering questions on towardsAI, an artificial intelligence blogs.
|
42 |
+
|
43 |
+
Users will be asking questions about the blog.
|
44 |
+
Your job is to determine wether or not a question is a valid question to ask, and should be answered.
|
45 |
+
More general questions are not considered valid, even if you might know the response.
|
46 |
+
A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.
|
47 |
+
|
48 |
+
For example:
|
49 |
+
|
50 |
+
Q: How can I setup my own chatbot?
|
51 |
+
true
|
52 |
+
|
53 |
+
Q: What is the meaning of life?
|
54 |
+
false
|
55 |
+
|
56 |
+
A user will submit a question. Respond 'true' if it is valid, respond 'false' if it is invalid.""",
|
57 |
+
"completion_kwargs": {
|
58 |
+
"model": "gpt-3.5-turbo",
|
59 |
+
"stream": False,
|
60 |
+
"temperature": 0,
|
61 |
+
},
|
62 |
+
},
|
63 |
+
retriever_cfg={
|
64 |
+
"db_path": "./documents.db",
|
65 |
+
"top_k": 3,
|
66 |
+
"thresh": 0.7,
|
67 |
+
"max_tokens": 2000,
|
68 |
+
"embedding_model": "text-embedding-ada-002",
|
69 |
+
},
|
70 |
+
documents_answerer_cfg={
|
71 |
+
"no_documents_message": "No blog posts are available for this question.",
|
72 |
+
},
|
73 |
+
completion_cfg={
|
74 |
+
"completion_kwargs": {
|
75 |
+
"model": "gpt-3.5-turbo",
|
76 |
+
"stream": True,
|
77 |
+
"temperature": 0,
|
78 |
+
},
|
79 |
+
},
|
80 |
+
tokenizer_cfg={
|
81 |
+
"model_name": "gpt-3.5-turbo",
|
82 |
+
},
|
83 |
+
documents_formatter_cfg={
|
84 |
+
"max_tokens": 3500,
|
85 |
+
"formatter": "{content}",
|
86 |
+
},
|
87 |
+
prompt_formatter_cfg={
|
88 |
+
"max_tokens": 3500,
|
89 |
+
"text_before_docs": (
|
90 |
+
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
91 |
+
"If the answer is in the documentation, summarize it in a helpful way to the user. "
|
92 |
+
"If it isn't, simply reply that you cannot answer the question. "
|
93 |
+
"Do not refer to the documentation directly, but use the instructions provided within it to answer questions. "
|
94 |
+
"Here is the documentation: "
|
95 |
+
"<DOCUMENTS> "
|
96 |
+
),
|
97 |
+
"text_after_docs": (
|
98 |
+
"<\DOCUMENTS>\n"
|
99 |
+
"REMEMBER:\n"
|
100 |
+
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
101 |
+
"Here are the rules you must follow:\n"
|
102 |
+
"1) You must only respond with information contained in the documentation above. Say you do not know if the information is not provided.\n"
|
103 |
+
"2) Make sure to format your answers in Markdown format, including code block and snippets.\n"
|
104 |
+
"3) Do not reference any links, urls or hyperlinks in your answers.\n"
|
105 |
+
"4) Do not refer to the documentation directly, but use the instructions provided within it to answer questions. "
|
106 |
+
"5) If you do not know the answer to a question, or if it is completely irrelevant to the library usage, simply reply with:\n"
|
107 |
+
"'I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?'"
|
108 |
+
"For example:\n"
|
109 |
+
"What is the meaning of life for a qa bot?\n"
|
110 |
+
"I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the library or its usage. Is there anything else I can assist you with?"
|
111 |
+
"Now answer the following question:\n"
|
112 |
+
),
|
113 |
+
},
|
114 |
+
)
|
115 |
+
|
116 |
+
# initialize buster with the config in cfg.py (adapt to your needs) ...
|
117 |
+
# buster_cfg = cfg.buster_cfg
|
118 |
+
retriever: Retriever = SQLiteRetriever(**buster_cfg.retriever_cfg)
|
119 |
+
tokenizer = GPTTokenizer(**buster_cfg.tokenizer_cfg)
|
120 |
+
document_answerer: DocumentAnswerer = DocumentAnswerer(
|
121 |
+
completer=ChatGPTCompleter(**buster_cfg.completion_cfg),
|
122 |
+
documents_formatter=DocumentsFormatter(
|
123 |
+
tokenizer=tokenizer, **buster_cfg.documents_formatter_cfg
|
124 |
+
),
|
125 |
+
prompt_formatter=PromptFormatter(
|
126 |
+
tokenizer=tokenizer, **buster_cfg.prompt_formatter_cfg
|
127 |
+
),
|
128 |
+
**buster_cfg.documents_answerer_cfg,
|
129 |
+
)
|
130 |
+
validator: Validator = QuestionAnswerValidator(**buster_cfg.validator_cfg)
|
131 |
+
buster: Buster = Buster(
|
132 |
+
retriever=retriever, document_answerer=document_answerer, validator=validator
|
133 |
+
)
|
gradio_app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cfg
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
from cfg import buster
|
7 |
+
|
8 |
+
|
9 |
+
import logging
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
USERNAME = os.getenv("BUSTER_USERNAME")
|
15 |
+
PASSWORD = os.getenv("BUSTER_PASSWORD")
|
16 |
+
|
17 |
+
|
18 |
+
def check_auth(username: str, password: str) -> bool:
|
19 |
+
valid_user = username == USERNAME
|
20 |
+
valid_password = password == PASSWORD
|
21 |
+
is_auth = valid_user and valid_password
|
22 |
+
logger.info(f"Log-in attempted by {username=}. {is_auth=}")
|
23 |
+
return is_auth
|
24 |
+
|
25 |
+
|
26 |
+
def format_sources(matched_documents: pd.DataFrame) -> str:
|
27 |
+
if len(matched_documents) == 0:
|
28 |
+
return ""
|
29 |
+
|
30 |
+
documents_answer_template: str = "π Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
|
31 |
+
document_template: str = "[π {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
|
32 |
+
|
33 |
+
matched_documents.similarity_to_answer = (
|
34 |
+
matched_documents.similarity_to_answer * 100
|
35 |
+
)
|
36 |
+
documents = "\n".join(
|
37 |
+
[
|
38 |
+
document_template.format(document=document)
|
39 |
+
for _, document in matched_documents.iterrows()
|
40 |
+
]
|
41 |
+
)
|
42 |
+
footnote: str = "I'm a bot π€ and not always perfect."
|
43 |
+
|
44 |
+
return documents_answer_template.format(documents=documents, footnote=footnote)
|
45 |
+
|
46 |
+
|
47 |
+
def add_sources(history, completion):
|
48 |
+
if completion.answer_relevant:
|
49 |
+
formatted_sources = format_sources(completion.matched_documents)
|
50 |
+
history.append([None, formatted_sources])
|
51 |
+
|
52 |
+
return history
|
53 |
+
|
54 |
+
|
55 |
+
def user(user_input, history):
|
56 |
+
"""Adds user's question immediately to the chat."""
|
57 |
+
return "", history + [[user_input, None]]
|
58 |
+
|
59 |
+
|
60 |
+
def chat(history):
|
61 |
+
user_input = history[-1][0]
|
62 |
+
|
63 |
+
completion = buster.process_input(user_input)
|
64 |
+
|
65 |
+
history[-1][1] = ""
|
66 |
+
|
67 |
+
for token in completion.answer_generator:
|
68 |
+
history[-1][1] += token
|
69 |
+
|
70 |
+
yield history, completion
|
71 |
+
|
72 |
+
|
73 |
+
block = gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}")
|
74 |
+
|
75 |
+
with block:
|
76 |
+
with gr.Row():
|
77 |
+
gr.Markdown(
|
78 |
+
"<h3><center>Buster π€: A Question-Answering Bot for your documentation</center></h3>"
|
79 |
+
)
|
80 |
+
|
81 |
+
chatbot = gr.Chatbot()
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
question = gr.Textbox(
|
85 |
+
label="What's your question?",
|
86 |
+
placeholder="Ask a question to AI stackoverflow here...",
|
87 |
+
lines=1,
|
88 |
+
)
|
89 |
+
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
|
90 |
+
|
91 |
+
examples = gr.Examples(
|
92 |
+
examples=[
|
93 |
+
"How can I perform backpropagation?",
|
94 |
+
"How do I deal with noisy data?",
|
95 |
+
"How do I deal with noisy data in 2 words?",
|
96 |
+
],
|
97 |
+
inputs=question,
|
98 |
+
)
|
99 |
+
|
100 |
+
gr.Markdown(
|
101 |
+
"This application uses GPT to search the docs for relevant info and answer questions."
|
102 |
+
)
|
103 |
+
|
104 |
+
response = gr.State()
|
105 |
+
|
106 |
+
submit.click(user, [question, chatbot], [question, chatbot], queue=False).then(
|
107 |
+
chat, inputs=[chatbot], outputs=[chatbot, response]
|
108 |
+
).then(add_sources, inputs=[chatbot, response], outputs=[chatbot])
|
109 |
+
question.submit(user, [question, chatbot], [question, chatbot], queue=False).then(
|
110 |
+
chat, inputs=[chatbot], outputs=[chatbot, response]
|
111 |
+
).then(add_sources, inputs=[chatbot, response], outputs=[chatbot])
|
112 |
+
|
113 |
+
|
114 |
+
block.queue(concurrency_count=16)
|
115 |
+
block.launch(debug=True, share=False, auth=check_auth)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/jerpint/buster@v1.0.14
|
2 |
+
gradio
|
setup.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
export GRADIO_SERVER_NAME=0.0.0.0
|
2 |
+
export GRADIO_SERVER_PORT=$PORT
|