Omar Solano commited on
Commit
b952f44
β€’
1 Parent(s): f4f4bac

remove commented code

Browse files
Files changed (1) hide show
  1. scripts/gradio-ui.py +14 -102
scripts/gradio-ui.py CHANGED
@@ -1,8 +1,5 @@
1
- import logging
2
  import os
3
  import pickle
4
- from datetime import datetime
5
- from typing import Optional
6
 
7
  import chromadb
8
  import gradio as gr
@@ -10,64 +7,23 @@ import logfire
10
  from custom_retriever import CustomRetriever
11
  from dotenv import load_dotenv
12
  from llama_index.agent.openai import OpenAIAgent
13
- from llama_index.core import VectorStoreIndex, get_response_synthesizer
14
- from llama_index.core.agent import AgentRunner, ReActAgent
15
-
16
- # from llama_index.core.chat_engine import (
17
- # CondensePlusContextChatEngine,
18
- # CondenseQuestionChatEngine,
19
- # ContextChatEngine,
20
- # )
21
- from llama_index.core.data_structs import Node
22
  from llama_index.core.llms import MessageRole
23
  from llama_index.core.memory import ChatMemoryBuffer
24
  from llama_index.core.node_parser import SentenceSplitter
25
- from llama_index.core.query_engine import RetrieverQueryEngine
26
  from llama_index.core.retrievers import VectorIndexRetriever
27
- from llama_index.core.tools import (
28
- FunctionTool,
29
- QueryEngineTool,
30
- RetrieverTool,
31
- ToolMetadata,
32
- )
33
-
34
- # from llama_index.core.vector_stores import (
35
- # ExactMatchFilter,
36
- # FilterCondition,
37
- # FilterOperator,
38
- # MetadataFilter,
39
- # MetadataFilters,
40
- # )
41
  from llama_index.embeddings.openai import OpenAIEmbedding
42
- from llama_index.llms.gemini import Gemini
43
  from llama_index.llms.openai import OpenAI
44
- from llama_index.llms.openai.utils import GPT4_MODELS
45
  from llama_index.vector_stores.chroma import ChromaVectorStore
46
- from tutor_prompts import (
47
- TEXT_QA_TEMPLATE,
48
- QueryValidation,
49
- system_message_openai_agent,
50
- system_message_validation,
51
- system_prompt,
52
- )
53
-
54
- load_dotenv()
55
-
56
 
57
  # from utils import init_mongo_db
58
 
59
- logging.getLogger("gradio").setLevel(logging.INFO)
60
- logging.getLogger("httpx").setLevel(logging.WARNING)
61
  logfire.configure()
62
- # logging.basicConfig(handlers=[logfire.LogfireLoggingHandler("INFO")])
63
- # logger = logging.getLogger(__name__)
64
 
65
- # # This variables are used to intercept API calls
66
- # # launch mitmweb
67
- # cert_file = "/Users/omar/Documents/mitmproxy-ca-cert.pem"
68
- # os.environ["REQUESTS_CA_BUNDLE"] = cert_file
69
- # os.environ["SSL_CERT_FILE"] = cert_file
70
- # os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
71
 
72
  CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
73
  MONGODB_URI = os.getenv("MONGODB_URI")
@@ -131,7 +87,6 @@ index = VectorStoreIndex.from_vector_store(
131
  use_async=True,
132
  )
133
  vector_retriever = VectorIndexRetriever(
134
- # filters=filters,
135
  index=index,
136
  similarity_top_k=10,
137
  use_async=True,
@@ -204,12 +159,10 @@ def generate_completion(
204
  chat_list = memory.get()
205
 
206
  if len(chat_list) != 0:
207
- # Compute number of interactions
208
  user_index = [
209
  i for i, msg in enumerate(chat_list) if msg.role == MessageRole.USER
210
  ]
211
  if len(user_index) > len(history):
212
- # A message was removed, need to update the memory
213
  user_index_to_remove = user_index[len(history)]
214
  chat_list = chat_list[:user_index_to_remove]
215
  memory.set(chat_list)
@@ -237,40 +190,9 @@ def generate_completion(
237
  # )
238
  # custom_retriever = CustomRetriever(vector_retriever, document_dict)
239
 
240
- if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
241
- llm = Gemini(
242
- api_key=os.getenv("GOOGLE_API_KEY"),
243
- model=f"models/{model}",
244
- temperature=1,
245
- max_tokens=None,
246
- )
247
- else:
248
- llm = OpenAI(temperature=1, model=model, max_tokens=None)
249
- client = llm._get_client()
250
- logfire.instrument_openai(client)
251
-
252
- # response_synthesizer = get_response_synthesizer(
253
- # llm=llm,
254
- # response_mode="simple_summarize",
255
- # text_qa_template=TEXT_QA_TEMPLATE,
256
- # streaming=True,
257
- # )
258
-
259
- # custom_query_engine = RetrieverQueryEngine(
260
- # retriever=custom_retriever,
261
- # response_synthesizer=response_synthesizer,
262
- # )
263
-
264
- # agent = CondensePlusContextChatEngine.from_defaults(
265
- # agent = CondenseQuestionChatEngine.from_defaults(
266
-
267
- # agent = ContextChatEngine.from_defaults(
268
- # retriever=custom_retriever,
269
- # context_template=system_prompt,
270
- # llm=llm,
271
- # memory=memory,
272
- # verbose=True,
273
- # )
274
 
275
  query_engine_tools = [
276
  RetrieverTool(
@@ -282,23 +204,13 @@ def generate_completion(
282
  )
283
  ]
284
 
285
- if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
286
- agent = AgentRunner.from_llm(
287
- llm=llm,
288
- tools=query_engine_tools, # type: ignore
289
- verbose=True,
290
- memory=memory,
291
- # system_prompt=system_message_openai_agent,
292
- )
293
- else:
294
- agent = OpenAIAgent.from_tools(
295
- llm=llm,
296
- memory=memory,
297
- tools=query_engine_tools, # type: ignore
298
- system_prompt=system_message_openai_agent,
299
- )
300
 
301
- # completion = custom_query_engine.query(query)
302
  completion = agent.stream_chat(query)
303
 
304
  answer_str = ""
 
 
1
  import os
2
  import pickle
 
 
3
 
4
  import chromadb
5
  import gradio as gr
 
7
  from custom_retriever import CustomRetriever
8
  from dotenv import load_dotenv
9
  from llama_index.agent.openai import OpenAIAgent
10
+ from llama_index.core import VectorStoreIndex
 
 
 
 
 
 
 
 
11
  from llama_index.core.llms import MessageRole
12
  from llama_index.core.memory import ChatMemoryBuffer
13
  from llama_index.core.node_parser import SentenceSplitter
 
14
  from llama_index.core.retrievers import VectorIndexRetriever
15
+ from llama_index.core.tools import RetrieverTool, ToolMetadata
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  from llama_index.embeddings.openai import OpenAIEmbedding
 
17
  from llama_index.llms.openai import OpenAI
 
18
  from llama_index.vector_stores.chroma import ChromaVectorStore
19
+ from tutor_prompts import system_message_openai_agent
 
 
 
 
 
 
 
 
 
20
 
21
  # from utils import init_mongo_db
22
 
23
+ load_dotenv()
24
+
25
  logfire.configure()
 
 
26
 
 
 
 
 
 
 
27
 
28
  CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
29
  MONGODB_URI = os.getenv("MONGODB_URI")
 
87
  use_async=True,
88
  )
89
  vector_retriever = VectorIndexRetriever(
 
90
  index=index,
91
  similarity_top_k=10,
92
  use_async=True,
 
159
  chat_list = memory.get()
160
 
161
  if len(chat_list) != 0:
 
162
  user_index = [
163
  i for i, msg in enumerate(chat_list) if msg.role == MessageRole.USER
164
  ]
165
  if len(user_index) > len(history):
 
166
  user_index_to_remove = user_index[len(history)]
167
  chat_list = chat_list[:user_index_to_remove]
168
  memory.set(chat_list)
 
190
  # )
191
  # custom_retriever = CustomRetriever(vector_retriever, document_dict)
192
 
193
+ llm = OpenAI(temperature=1, model=model, max_tokens=None)
194
+ client = llm._get_client()
195
+ logfire.instrument_openai(client)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
  query_engine_tools = [
198
  RetrieverTool(
 
204
  )
205
  ]
206
 
207
+ agent = OpenAIAgent.from_tools(
208
+ llm=llm,
209
+ memory=memory,
210
+ tools=query_engine_tools, # type: ignore
211
+ system_prompt=system_message_openai_agent,
212
+ )
 
 
 
 
 
 
 
 
 
213
 
 
214
  completion = agent.stream_chat(query)
215
 
216
  answer_str = ""