Spaces:
Sleeping
Sleeping
Created using Colab
Browse files- notebooks/Metadata_Filtering.ipynb +134 -105
notebooks/Metadata_Filtering.ipynb
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
"provenance": [],
|
7 |
-
"authorship_tag": "
|
8 |
"include_colab_link": true
|
9 |
},
|
10 |
"kernelspec": {
|
@@ -16,7 +16,7 @@
|
|
16 |
},
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
-
"
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"model_module_version": "1.5.0",
|
@@ -31,14 +31,14 @@
|
|
31 |
"_view_name": "HBoxView",
|
32 |
"box_style": "",
|
33 |
"children": [
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
],
|
38 |
-
"layout": "
|
39 |
}
|
40 |
},
|
41 |
-
"
|
42 |
"model_module": "@jupyter-widgets/controls",
|
43 |
"model_name": "HTMLModel",
|
44 |
"model_module_version": "1.5.0",
|
@@ -53,13 +53,13 @@
|
|
53 |
"_view_name": "HTMLView",
|
54 |
"description": "",
|
55 |
"description_tooltip": null,
|
56 |
-
"layout": "
|
57 |
"placeholder": "β",
|
58 |
-
"style": "
|
59 |
"value": "Parsingβnodes:β100%"
|
60 |
}
|
61 |
},
|
62 |
-
"
|
63 |
"model_module": "@jupyter-widgets/controls",
|
64 |
"model_name": "FloatProgressModel",
|
65 |
"model_module_version": "1.5.0",
|
@@ -75,15 +75,15 @@
|
|
75 |
"bar_style": "success",
|
76 |
"description": "",
|
77 |
"description_tooltip": null,
|
78 |
-
"layout": "
|
79 |
"max": 14,
|
80 |
"min": 0,
|
81 |
"orientation": "horizontal",
|
82 |
-
"style": "
|
83 |
"value": 14
|
84 |
}
|
85 |
},
|
86 |
-
"
|
87 |
"model_module": "@jupyter-widgets/controls",
|
88 |
"model_name": "HTMLModel",
|
89 |
"model_module_version": "1.5.0",
|
@@ -98,13 +98,13 @@
|
|
98 |
"_view_name": "HTMLView",
|
99 |
"description": "",
|
100 |
"description_tooltip": null,
|
101 |
-
"layout": "
|
102 |
"placeholder": "β",
|
103 |
-
"style": "
|
104 |
-
"value": "β14/14β[00:
|
105 |
}
|
106 |
},
|
107 |
-
"
|
108 |
"model_module": "@jupyter-widgets/base",
|
109 |
"model_name": "LayoutModel",
|
110 |
"model_module_version": "1.2.0",
|
@@ -156,7 +156,7 @@
|
|
156 |
"width": null
|
157 |
}
|
158 |
},
|
159 |
-
"
|
160 |
"model_module": "@jupyter-widgets/base",
|
161 |
"model_name": "LayoutModel",
|
162 |
"model_module_version": "1.2.0",
|
@@ -208,7 +208,7 @@
|
|
208 |
"width": null
|
209 |
}
|
210 |
},
|
211 |
-
"
|
212 |
"model_module": "@jupyter-widgets/controls",
|
213 |
"model_name": "DescriptionStyleModel",
|
214 |
"model_module_version": "1.5.0",
|
@@ -223,7 +223,7 @@
|
|
223 |
"description_width": ""
|
224 |
}
|
225 |
},
|
226 |
-
"
|
227 |
"model_module": "@jupyter-widgets/base",
|
228 |
"model_name": "LayoutModel",
|
229 |
"model_module_version": "1.2.0",
|
@@ -275,7 +275,7 @@
|
|
275 |
"width": null
|
276 |
}
|
277 |
},
|
278 |
-
"
|
279 |
"model_module": "@jupyter-widgets/controls",
|
280 |
"model_name": "ProgressStyleModel",
|
281 |
"model_module_version": "1.5.0",
|
@@ -291,7 +291,7 @@
|
|
291 |
"description_width": ""
|
292 |
}
|
293 |
},
|
294 |
-
"
|
295 |
"model_module": "@jupyter-widgets/base",
|
296 |
"model_name": "LayoutModel",
|
297 |
"model_module_version": "1.2.0",
|
@@ -343,7 +343,7 @@
|
|
343 |
"width": null
|
344 |
}
|
345 |
},
|
346 |
-
"
|
347 |
"model_module": "@jupyter-widgets/controls",
|
348 |
"model_name": "DescriptionStyleModel",
|
349 |
"model_module_version": "1.5.0",
|
@@ -358,7 +358,7 @@
|
|
358 |
"description_width": ""
|
359 |
}
|
360 |
},
|
361 |
-
"
|
362 |
"model_module": "@jupyter-widgets/controls",
|
363 |
"model_name": "HBoxModel",
|
364 |
"model_module_version": "1.5.0",
|
@@ -373,14 +373,14 @@
|
|
373 |
"_view_name": "HBoxView",
|
374 |
"box_style": "",
|
375 |
"children": [
|
376 |
-
"
|
377 |
-
"
|
378 |
-
"
|
379 |
],
|
380 |
-
"layout": "
|
381 |
}
|
382 |
},
|
383 |
-
"
|
384 |
"model_module": "@jupyter-widgets/controls",
|
385 |
"model_name": "HTMLModel",
|
386 |
"model_module_version": "1.5.0",
|
@@ -395,13 +395,13 @@
|
|
395 |
"_view_name": "HTMLView",
|
396 |
"description": "",
|
397 |
"description_tooltip": null,
|
398 |
-
"layout": "
|
399 |
"placeholder": "β",
|
400 |
-
"style": "
|
401 |
"value": "Generatingβembeddings:β100%"
|
402 |
}
|
403 |
},
|
404 |
-
"
|
405 |
"model_module": "@jupyter-widgets/controls",
|
406 |
"model_name": "FloatProgressModel",
|
407 |
"model_module_version": "1.5.0",
|
@@ -417,15 +417,15 @@
|
|
417 |
"bar_style": "success",
|
418 |
"description": "",
|
419 |
"description_tooltip": null,
|
420 |
-
"layout": "
|
421 |
"max": 108,
|
422 |
"min": 0,
|
423 |
"orientation": "horizontal",
|
424 |
-
"style": "
|
425 |
"value": 108
|
426 |
}
|
427 |
},
|
428 |
-
"
|
429 |
"model_module": "@jupyter-widgets/controls",
|
430 |
"model_name": "HTMLModel",
|
431 |
"model_module_version": "1.5.0",
|
@@ -440,13 +440,13 @@
|
|
440 |
"_view_name": "HTMLView",
|
441 |
"description": "",
|
442 |
"description_tooltip": null,
|
443 |
-
"layout": "
|
444 |
"placeholder": "β",
|
445 |
-
"style": "
|
446 |
-
"value": "β108/108β[00:
|
447 |
}
|
448 |
},
|
449 |
-
"
|
450 |
"model_module": "@jupyter-widgets/base",
|
451 |
"model_name": "LayoutModel",
|
452 |
"model_module_version": "1.2.0",
|
@@ -498,7 +498,7 @@
|
|
498 |
"width": null
|
499 |
}
|
500 |
},
|
501 |
-
"
|
502 |
"model_module": "@jupyter-widgets/base",
|
503 |
"model_name": "LayoutModel",
|
504 |
"model_module_version": "1.2.0",
|
@@ -550,7 +550,7 @@
|
|
550 |
"width": null
|
551 |
}
|
552 |
},
|
553 |
-
"
|
554 |
"model_module": "@jupyter-widgets/controls",
|
555 |
"model_name": "DescriptionStyleModel",
|
556 |
"model_module_version": "1.5.0",
|
@@ -565,7 +565,7 @@
|
|
565 |
"description_width": ""
|
566 |
}
|
567 |
},
|
568 |
-
"
|
569 |
"model_module": "@jupyter-widgets/base",
|
570 |
"model_name": "LayoutModel",
|
571 |
"model_module_version": "1.2.0",
|
@@ -617,7 +617,7 @@
|
|
617 |
"width": null
|
618 |
}
|
619 |
},
|
620 |
-
"
|
621 |
"model_module": "@jupyter-widgets/controls",
|
622 |
"model_name": "ProgressStyleModel",
|
623 |
"model_module_version": "1.5.0",
|
@@ -633,7 +633,7 @@
|
|
633 |
"description_width": ""
|
634 |
}
|
635 |
},
|
636 |
-
"
|
637 |
"model_module": "@jupyter-widgets/base",
|
638 |
"model_name": "LayoutModel",
|
639 |
"model_module_version": "1.2.0",
|
@@ -685,7 +685,7 @@
|
|
685 |
"width": null
|
686 |
}
|
687 |
},
|
688 |
-
"
|
689 |
"model_module": "@jupyter-widgets/controls",
|
690 |
"model_name": "DescriptionStyleModel",
|
691 |
"model_module_version": "1.5.0",
|
@@ -731,28 +731,28 @@
|
|
731 |
"colab": {
|
732 |
"base_uri": "https://localhost:8080/"
|
733 |
},
|
734 |
-
"outputId": "
|
735 |
},
|
736 |
"outputs": [
|
737 |
{
|
738 |
"output_type": "stream",
|
739 |
"name": "stdout",
|
740 |
"text": [
|
741 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m226.7/226.7 kB\u001b[0m \u001b[31m3.
|
742 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[
|
743 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[
|
744 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[
|
745 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[
|
746 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m254.1/254.1 kB\u001b[0m \u001b[
|
747 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[
|
748 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[
|
749 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.8/130.8 kB\u001b[0m \u001b[
|
750 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[
|
751 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[
|
752 |
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
753 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m309.3/309.3 kB\u001b[0m \u001b[31m13.
|
754 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m57.5/57.5 kB\u001b[0m \u001b[31m5.
|
755 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.2/49.2 kB\u001b[0m \u001b[31m3.
|
756 |
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
757 |
"cudf-cu12 24.4.1 requires protobuf<5,>=3.20, but you have protobuf 5.27.2 which is incompatible.\n",
|
758 |
"google-ai-generativelanguage 0.6.4 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 5.27.2 which is incompatible.\n",
|
@@ -789,7 +789,7 @@
|
|
789 |
"metadata": {
|
790 |
"id": "riuXwpSPcvWC"
|
791 |
},
|
792 |
-
"execution_count":
|
793 |
"outputs": []
|
794 |
},
|
795 |
{
|
@@ -802,7 +802,7 @@
|
|
802 |
"metadata": {
|
803 |
"id": "jIEeZzqLbz0J"
|
804 |
},
|
805 |
-
"execution_count":
|
806 |
"outputs": []
|
807 |
},
|
808 |
{
|
@@ -824,7 +824,7 @@
|
|
824 |
"metadata": {
|
825 |
"id": "9oGT6crooSSj"
|
826 |
},
|
827 |
-
"execution_count":
|
828 |
"outputs": []
|
829 |
},
|
830 |
{
|
@@ -849,7 +849,7 @@
|
|
849 |
"metadata": {
|
850 |
"id": "aNY6mrk6BF7V"
|
851 |
},
|
852 |
-
"execution_count":
|
853 |
"outputs": []
|
854 |
},
|
855 |
{
|
@@ -862,7 +862,7 @@
|
|
862 |
"metadata": {
|
863 |
"id": "Z109ur9OC7U_"
|
864 |
},
|
865 |
-
"execution_count":
|
866 |
"outputs": []
|
867 |
},
|
868 |
{
|
@@ -902,24 +902,24 @@
|
|
902 |
"base_uri": "https://localhost:8080/"
|
903 |
},
|
904 |
"id": "wl_pbPvMlv1h",
|
905 |
-
"outputId": "
|
906 |
},
|
907 |
-
"execution_count":
|
908 |
"outputs": [
|
909 |
{
|
910 |
"output_type": "stream",
|
911 |
"name": "stdout",
|
912 |
"text": [
|
913 |
-
"--2024-07-
|
914 |
-
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.
|
915 |
-
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.
|
916 |
"HTTP request sent, awaiting response... 200 OK\n",
|
917 |
"Length: 173646 (170K) [text/plain]\n",
|
918 |
"Saving to: βmini-llama-articles.csvβ\n",
|
919 |
"\n",
|
920 |
-
"
|
921 |
"\n",
|
922 |
-
"2024-07-
|
923 |
"\n"
|
924 |
]
|
925 |
}
|
@@ -957,9 +957,9 @@
|
|
957 |
"colab": {
|
958 |
"base_uri": "https://localhost:8080/"
|
959 |
},
|
960 |
-
"outputId": "
|
961 |
},
|
962 |
-
"execution_count":
|
963 |
"outputs": [
|
964 |
{
|
965 |
"output_type": "execute_result",
|
@@ -993,7 +993,7 @@
|
|
993 |
"metadata": {
|
994 |
"id": "YizvmXPejkJE"
|
995 |
},
|
996 |
-
"execution_count":
|
997 |
"outputs": []
|
998 |
},
|
999 |
{
|
@@ -1019,7 +1019,7 @@
|
|
1019 |
"metadata": {
|
1020 |
"id": "9z3t70DGWsjO"
|
1021 |
},
|
1022 |
-
"execution_count":
|
1023 |
"outputs": []
|
1024 |
},
|
1025 |
{
|
@@ -1050,34 +1050,34 @@
|
|
1050 |
"base_uri": "https://localhost:8080/",
|
1051 |
"height": 116,
|
1052 |
"referenced_widgets": [
|
1053 |
-
"
|
1054 |
-
"
|
1055 |
-
"
|
1056 |
-
"
|
1057 |
-
"
|
1058 |
-
"
|
1059 |
-
"
|
1060 |
-
"
|
1061 |
-
"
|
1062 |
-
"
|
1063 |
-
"
|
1064 |
-
"
|
1065 |
-
"
|
1066 |
-
"
|
1067 |
-
"
|
1068 |
-
"
|
1069 |
-
"
|
1070 |
-
"
|
1071 |
-
"
|
1072 |
-
"
|
1073 |
-
"
|
1074 |
-
"
|
1075 |
]
|
1076 |
},
|
1077 |
"id": "P9LDJ7o-Wsc-",
|
1078 |
-
"outputId": "
|
1079 |
},
|
1080 |
-
"execution_count":
|
1081 |
"outputs": [
|
1082 |
{
|
1083 |
"output_type": "display_data",
|
@@ -1088,7 +1088,7 @@
|
|
1088 |
"application/vnd.jupyter.widget-view+json": {
|
1089 |
"version_major": 2,
|
1090 |
"version_minor": 0,
|
1091 |
-
"model_id": "
|
1092 |
}
|
1093 |
},
|
1094 |
"metadata": {}
|
@@ -1097,7 +1097,7 @@
|
|
1097 |
"output_type": "stream",
|
1098 |
"name": "stderr",
|
1099 |
"text": [
|
1100 |
-
"100%|ββββββββββ| 108/108 [00:
|
1101 |
]
|
1102 |
},
|
1103 |
{
|
@@ -1109,7 +1109,7 @@
|
|
1109 |
"application/vnd.jupyter.widget-view+json": {
|
1110 |
"version_major": 2,
|
1111 |
"version_minor": 0,
|
1112 |
-
"model_id": "
|
1113 |
}
|
1114 |
},
|
1115 |
"metadata": {}
|
@@ -1133,9 +1133,9 @@
|
|
1133 |
"base_uri": "https://localhost:8080/"
|
1134 |
},
|
1135 |
"id": "mPGa85hM2P3P",
|
1136 |
-
"outputId": "
|
1137 |
},
|
1138 |
-
"execution_count":
|
1139 |
"outputs": [
|
1140 |
{
|
1141 |
"output_type": "execute_result",
|
@@ -1149,6 +1149,35 @@
|
|
1149 |
}
|
1150 |
]
|
1151 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1152 |
{
|
1153 |
"cell_type": "code",
|
1154 |
"source": [
|
|
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
"provenance": [],
|
7 |
+
"authorship_tag": "ABX9TyPf/kwiH4yYyYbpjHG8mnc3",
|
8 |
"include_colab_link": true
|
9 |
},
|
10 |
"kernelspec": {
|
|
|
16 |
},
|
17 |
"widgets": {
|
18 |
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"d3a4fe4269ed45dcab07c9068d8d4ea8": {
|
20 |
"model_module": "@jupyter-widgets/controls",
|
21 |
"model_name": "HBoxModel",
|
22 |
"model_module_version": "1.5.0",
|
|
|
31 |
"_view_name": "HBoxView",
|
32 |
"box_style": "",
|
33 |
"children": [
|
34 |
+
"IPY_MODEL_766140d81c3246849fabd1c7f38a25cf",
|
35 |
+
"IPY_MODEL_c0ec83c50bef4785a803505390f99de5",
|
36 |
+
"IPY_MODEL_d1af5e772b954edfa6e4da4df8069e07"
|
37 |
],
|
38 |
+
"layout": "IPY_MODEL_e07f5e5042cb4530b2b6bc4ba3c7baa5"
|
39 |
}
|
40 |
},
|
41 |
+
"766140d81c3246849fabd1c7f38a25cf": {
|
42 |
"model_module": "@jupyter-widgets/controls",
|
43 |
"model_name": "HTMLModel",
|
44 |
"model_module_version": "1.5.0",
|
|
|
53 |
"_view_name": "HTMLView",
|
54 |
"description": "",
|
55 |
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_218d93e956a24e399b9c587fd4aaaaae",
|
57 |
"placeholder": "β",
|
58 |
+
"style": "IPY_MODEL_28cfd4c07624419099097b0624eddb20",
|
59 |
"value": "Parsingβnodes:β100%"
|
60 |
}
|
61 |
},
|
62 |
+
"c0ec83c50bef4785a803505390f99de5": {
|
63 |
"model_module": "@jupyter-widgets/controls",
|
64 |
"model_name": "FloatProgressModel",
|
65 |
"model_module_version": "1.5.0",
|
|
|
75 |
"bar_style": "success",
|
76 |
"description": "",
|
77 |
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_22601ab55f4845269c4392bdfcd6c779",
|
79 |
"max": 14,
|
80 |
"min": 0,
|
81 |
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_586d67e1afae42ca9c65a17ae13573d8",
|
83 |
"value": 14
|
84 |
}
|
85 |
},
|
86 |
+
"d1af5e772b954edfa6e4da4df8069e07": {
|
87 |
"model_module": "@jupyter-widgets/controls",
|
88 |
"model_name": "HTMLModel",
|
89 |
"model_module_version": "1.5.0",
|
|
|
98 |
"_view_name": "HTMLView",
|
99 |
"description": "",
|
100 |
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_6a459a1e65494dcba3a86dd30071909a",
|
102 |
"placeholder": "β",
|
103 |
+
"style": "IPY_MODEL_e74876ff3dd049f8bc2e0fbe71dcd255",
|
104 |
+
"value": "β14/14β[00:01<00:00,β13.21it/s]"
|
105 |
}
|
106 |
},
|
107 |
+
"e07f5e5042cb4530b2b6bc4ba3c7baa5": {
|
108 |
"model_module": "@jupyter-widgets/base",
|
109 |
"model_name": "LayoutModel",
|
110 |
"model_module_version": "1.2.0",
|
|
|
156 |
"width": null
|
157 |
}
|
158 |
},
|
159 |
+
"218d93e956a24e399b9c587fd4aaaaae": {
|
160 |
"model_module": "@jupyter-widgets/base",
|
161 |
"model_name": "LayoutModel",
|
162 |
"model_module_version": "1.2.0",
|
|
|
208 |
"width": null
|
209 |
}
|
210 |
},
|
211 |
+
"28cfd4c07624419099097b0624eddb20": {
|
212 |
"model_module": "@jupyter-widgets/controls",
|
213 |
"model_name": "DescriptionStyleModel",
|
214 |
"model_module_version": "1.5.0",
|
|
|
223 |
"description_width": ""
|
224 |
}
|
225 |
},
|
226 |
+
"22601ab55f4845269c4392bdfcd6c779": {
|
227 |
"model_module": "@jupyter-widgets/base",
|
228 |
"model_name": "LayoutModel",
|
229 |
"model_module_version": "1.2.0",
|
|
|
275 |
"width": null
|
276 |
}
|
277 |
},
|
278 |
+
"586d67e1afae42ca9c65a17ae13573d8": {
|
279 |
"model_module": "@jupyter-widgets/controls",
|
280 |
"model_name": "ProgressStyleModel",
|
281 |
"model_module_version": "1.5.0",
|
|
|
291 |
"description_width": ""
|
292 |
}
|
293 |
},
|
294 |
+
"6a459a1e65494dcba3a86dd30071909a": {
|
295 |
"model_module": "@jupyter-widgets/base",
|
296 |
"model_name": "LayoutModel",
|
297 |
"model_module_version": "1.2.0",
|
|
|
343 |
"width": null
|
344 |
}
|
345 |
},
|
346 |
+
"e74876ff3dd049f8bc2e0fbe71dcd255": {
|
347 |
"model_module": "@jupyter-widgets/controls",
|
348 |
"model_name": "DescriptionStyleModel",
|
349 |
"model_module_version": "1.5.0",
|
|
|
358 |
"description_width": ""
|
359 |
}
|
360 |
},
|
361 |
+
"4f34f259d011412f8caab28a8bacfab5": {
|
362 |
"model_module": "@jupyter-widgets/controls",
|
363 |
"model_name": "HBoxModel",
|
364 |
"model_module_version": "1.5.0",
|
|
|
373 |
"_view_name": "HBoxView",
|
374 |
"box_style": "",
|
375 |
"children": [
|
376 |
+
"IPY_MODEL_99530a50cd02411dacdcdc64bfa780cc",
|
377 |
+
"IPY_MODEL_1e07dbafe07c4801913827784f5ce01e",
|
378 |
+
"IPY_MODEL_33744ece0c6c4fb18ca4918514e51e71"
|
379 |
],
|
380 |
+
"layout": "IPY_MODEL_be4df739b8fc49e2b65bb9cf68f17422"
|
381 |
}
|
382 |
},
|
383 |
+
"99530a50cd02411dacdcdc64bfa780cc": {
|
384 |
"model_module": "@jupyter-widgets/controls",
|
385 |
"model_name": "HTMLModel",
|
386 |
"model_module_version": "1.5.0",
|
|
|
395 |
"_view_name": "HTMLView",
|
396 |
"description": "",
|
397 |
"description_tooltip": null,
|
398 |
+
"layout": "IPY_MODEL_215e22dbf804407281752569e78672c4",
|
399 |
"placeholder": "β",
|
400 |
+
"style": "IPY_MODEL_355241154533492daa560f1f9269693e",
|
401 |
"value": "Generatingβembeddings:β100%"
|
402 |
}
|
403 |
},
|
404 |
+
"1e07dbafe07c4801913827784f5ce01e": {
|
405 |
"model_module": "@jupyter-widgets/controls",
|
406 |
"model_name": "FloatProgressModel",
|
407 |
"model_module_version": "1.5.0",
|
|
|
417 |
"bar_style": "success",
|
418 |
"description": "",
|
419 |
"description_tooltip": null,
|
420 |
+
"layout": "IPY_MODEL_2990c7fc63f243bc8e984f7953f66c7e",
|
421 |
"max": 108,
|
422 |
"min": 0,
|
423 |
"orientation": "horizontal",
|
424 |
+
"style": "IPY_MODEL_157d589b1b6c46b68b9457b117908fdd",
|
425 |
"value": 108
|
426 |
}
|
427 |
},
|
428 |
+
"33744ece0c6c4fb18ca4918514e51e71": {
|
429 |
"model_module": "@jupyter-widgets/controls",
|
430 |
"model_name": "HTMLModel",
|
431 |
"model_module_version": "1.5.0",
|
|
|
440 |
"_view_name": "HTMLView",
|
441 |
"description": "",
|
442 |
"description_tooltip": null,
|
443 |
+
"layout": "IPY_MODEL_865e3622a8ff4ad0b457bd6dfc1aa703",
|
444 |
"placeholder": "β",
|
445 |
+
"style": "IPY_MODEL_e3ef913013ca48feabe77c39af71a17e",
|
446 |
+
"value": "β108/108β[00:02<00:00,β39.82it/s]"
|
447 |
}
|
448 |
},
|
449 |
+
"be4df739b8fc49e2b65bb9cf68f17422": {
|
450 |
"model_module": "@jupyter-widgets/base",
|
451 |
"model_name": "LayoutModel",
|
452 |
"model_module_version": "1.2.0",
|
|
|
498 |
"width": null
|
499 |
}
|
500 |
},
|
501 |
+
"215e22dbf804407281752569e78672c4": {
|
502 |
"model_module": "@jupyter-widgets/base",
|
503 |
"model_name": "LayoutModel",
|
504 |
"model_module_version": "1.2.0",
|
|
|
550 |
"width": null
|
551 |
}
|
552 |
},
|
553 |
+
"355241154533492daa560f1f9269693e": {
|
554 |
"model_module": "@jupyter-widgets/controls",
|
555 |
"model_name": "DescriptionStyleModel",
|
556 |
"model_module_version": "1.5.0",
|
|
|
565 |
"description_width": ""
|
566 |
}
|
567 |
},
|
568 |
+
"2990c7fc63f243bc8e984f7953f66c7e": {
|
569 |
"model_module": "@jupyter-widgets/base",
|
570 |
"model_name": "LayoutModel",
|
571 |
"model_module_version": "1.2.0",
|
|
|
617 |
"width": null
|
618 |
}
|
619 |
},
|
620 |
+
"157d589b1b6c46b68b9457b117908fdd": {
|
621 |
"model_module": "@jupyter-widgets/controls",
|
622 |
"model_name": "ProgressStyleModel",
|
623 |
"model_module_version": "1.5.0",
|
|
|
633 |
"description_width": ""
|
634 |
}
|
635 |
},
|
636 |
+
"865e3622a8ff4ad0b457bd6dfc1aa703": {
|
637 |
"model_module": "@jupyter-widgets/base",
|
638 |
"model_name": "LayoutModel",
|
639 |
"model_module_version": "1.2.0",
|
|
|
685 |
"width": null
|
686 |
}
|
687 |
},
|
688 |
+
"e3ef913013ca48feabe77c39af71a17e": {
|
689 |
"model_module": "@jupyter-widgets/controls",
|
690 |
"model_name": "DescriptionStyleModel",
|
691 |
"model_module_version": "1.5.0",
|
|
|
731 |
"colab": {
|
732 |
"base_uri": "https://localhost:8080/"
|
733 |
},
|
734 |
+
"outputId": "8719014d-1535-44ec-afb9-a29eb154e737"
|
735 |
},
|
736 |
"outputs": [
|
737 |
{
|
738 |
"output_type": "stream",
|
739 |
"name": "stdout",
|
740 |
"text": [
|
741 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m226.7/226.7 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
742 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
743 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m47.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
744 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m46.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
745 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
746 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m254.1/254.1 kB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
747 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
748 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
749 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.8/130.8 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
750 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m9.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
751 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
752 |
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
753 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m309.3/309.3 kB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
754 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m57.5/57.5 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
755 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.2/49.2 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
756 |
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
757 |
"cudf-cu12 24.4.1 requires protobuf<5,>=3.20, but you have protobuf 5.27.2 which is incompatible.\n",
|
758 |
"google-ai-generativelanguage 0.6.4 requires protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5, but you have protobuf 5.27.2 which is incompatible.\n",
|
|
|
789 |
"metadata": {
|
790 |
"id": "riuXwpSPcvWC"
|
791 |
},
|
792 |
+
"execution_count": 2,
|
793 |
"outputs": []
|
794 |
},
|
795 |
{
|
|
|
802 |
"metadata": {
|
803 |
"id": "jIEeZzqLbz0J"
|
804 |
},
|
805 |
+
"execution_count": 3,
|
806 |
"outputs": []
|
807 |
},
|
808 |
{
|
|
|
824 |
"metadata": {
|
825 |
"id": "9oGT6crooSSj"
|
826 |
},
|
827 |
+
"execution_count": 4,
|
828 |
"outputs": []
|
829 |
},
|
830 |
{
|
|
|
849 |
"metadata": {
|
850 |
"id": "aNY6mrk6BF7V"
|
851 |
},
|
852 |
+
"execution_count": 5,
|
853 |
"outputs": []
|
854 |
},
|
855 |
{
|
|
|
862 |
"metadata": {
|
863 |
"id": "Z109ur9OC7U_"
|
864 |
},
|
865 |
+
"execution_count": 6,
|
866 |
"outputs": []
|
867 |
},
|
868 |
{
|
|
|
902 |
"base_uri": "https://localhost:8080/"
|
903 |
},
|
904 |
"id": "wl_pbPvMlv1h",
|
905 |
+
"outputId": "9d052275-9b9d-4976-f2f5-1a1d111bbb60"
|
906 |
},
|
907 |
+
"execution_count": 7,
|
908 |
"outputs": [
|
909 |
{
|
910 |
"output_type": "stream",
|
911 |
"name": "stdout",
|
912 |
"text": [
|
913 |
+
"--2024-07-10 17:06:11-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv\n",
|
914 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.108.133, 185.199.111.133, ...\n",
|
915 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
|
916 |
"HTTP request sent, awaiting response... 200 OK\n",
|
917 |
"Length: 173646 (170K) [text/plain]\n",
|
918 |
"Saving to: βmini-llama-articles.csvβ\n",
|
919 |
"\n",
|
920 |
+
"mini-llama-articles 100%[===================>] 169.58K --.-KB/s in 0.1s \n",
|
921 |
"\n",
|
922 |
+
"2024-07-10 17:06:12 (1.52 MB/s) - βmini-llama-articles.csvβ saved [173646/173646]\n",
|
923 |
"\n"
|
924 |
]
|
925 |
}
|
|
|
957 |
"colab": {
|
958 |
"base_uri": "https://localhost:8080/"
|
959 |
},
|
960 |
+
"outputId": "9efce6d4-760f-435b-9e6e-44a993d11442"
|
961 |
},
|
962 |
+
"execution_count": 8,
|
963 |
"outputs": [
|
964 |
{
|
965 |
"output_type": "execute_result",
|
|
|
993 |
"metadata": {
|
994 |
"id": "YizvmXPejkJE"
|
995 |
},
|
996 |
+
"execution_count": 9,
|
997 |
"outputs": []
|
998 |
},
|
999 |
{
|
|
|
1019 |
"metadata": {
|
1020 |
"id": "9z3t70DGWsjO"
|
1021 |
},
|
1022 |
+
"execution_count": 10,
|
1023 |
"outputs": []
|
1024 |
},
|
1025 |
{
|
|
|
1050 |
"base_uri": "https://localhost:8080/",
|
1051 |
"height": 116,
|
1052 |
"referenced_widgets": [
|
1053 |
+
"d3a4fe4269ed45dcab07c9068d8d4ea8",
|
1054 |
+
"766140d81c3246849fabd1c7f38a25cf",
|
1055 |
+
"c0ec83c50bef4785a803505390f99de5",
|
1056 |
+
"d1af5e772b954edfa6e4da4df8069e07",
|
1057 |
+
"e07f5e5042cb4530b2b6bc4ba3c7baa5",
|
1058 |
+
"218d93e956a24e399b9c587fd4aaaaae",
|
1059 |
+
"28cfd4c07624419099097b0624eddb20",
|
1060 |
+
"22601ab55f4845269c4392bdfcd6c779",
|
1061 |
+
"586d67e1afae42ca9c65a17ae13573d8",
|
1062 |
+
"6a459a1e65494dcba3a86dd30071909a",
|
1063 |
+
"e74876ff3dd049f8bc2e0fbe71dcd255",
|
1064 |
+
"4f34f259d011412f8caab28a8bacfab5",
|
1065 |
+
"99530a50cd02411dacdcdc64bfa780cc",
|
1066 |
+
"1e07dbafe07c4801913827784f5ce01e",
|
1067 |
+
"33744ece0c6c4fb18ca4918514e51e71",
|
1068 |
+
"be4df739b8fc49e2b65bb9cf68f17422",
|
1069 |
+
"215e22dbf804407281752569e78672c4",
|
1070 |
+
"355241154533492daa560f1f9269693e",
|
1071 |
+
"2990c7fc63f243bc8e984f7953f66c7e",
|
1072 |
+
"157d589b1b6c46b68b9457b117908fdd",
|
1073 |
+
"865e3622a8ff4ad0b457bd6dfc1aa703",
|
1074 |
+
"e3ef913013ca48feabe77c39af71a17e"
|
1075 |
]
|
1076 |
},
|
1077 |
"id": "P9LDJ7o-Wsc-",
|
1078 |
+
"outputId": "139c0860-71d6-47a4-a569-61499a173f9b"
|
1079 |
},
|
1080 |
+
"execution_count": 11,
|
1081 |
"outputs": [
|
1082 |
{
|
1083 |
"output_type": "display_data",
|
|
|
1088 |
"application/vnd.jupyter.widget-view+json": {
|
1089 |
"version_major": 2,
|
1090 |
"version_minor": 0,
|
1091 |
+
"model_id": "d3a4fe4269ed45dcab07c9068d8d4ea8"
|
1092 |
}
|
1093 |
},
|
1094 |
"metadata": {}
|
|
|
1097 |
"output_type": "stream",
|
1098 |
"name": "stderr",
|
1099 |
"text": [
|
1100 |
+
"100%|ββββββββββ| 108/108 [00:57<00:00, 1.89it/s]\n"
|
1101 |
]
|
1102 |
},
|
1103 |
{
|
|
|
1109 |
"application/vnd.jupyter.widget-view+json": {
|
1110 |
"version_major": 2,
|
1111 |
"version_minor": 0,
|
1112 |
+
"model_id": "4f34f259d011412f8caab28a8bacfab5"
|
1113 |
}
|
1114 |
},
|
1115 |
"metadata": {}
|
|
|
1133 |
"base_uri": "https://localhost:8080/"
|
1134 |
},
|
1135 |
"id": "mPGa85hM2P3P",
|
1136 |
+
"outputId": "de62aba3-ad82-4b78-a800-1aee72546c0f"
|
1137 |
},
|
1138 |
+
"execution_count": 12,
|
1139 |
"outputs": [
|
1140 |
{
|
1141 |
"output_type": "execute_result",
|
|
|
1149 |
}
|
1150 |
]
|
1151 |
},
|
1152 |
+
{
|
1153 |
+
"cell_type": "code",
|
1154 |
+
"source": [
|
1155 |
+
"nodes[0].metadata"
|
1156 |
+
],
|
1157 |
+
"metadata": {
|
1158 |
+
"id": "03xtKcBanBDL",
|
1159 |
+
"outputId": "cea4fca1-f193-4f22-eade-b638888139b6",
|
1160 |
+
"colab": {
|
1161 |
+
"base_uri": "https://localhost:8080/"
|
1162 |
+
}
|
1163 |
+
},
|
1164 |
+
"execution_count": 15,
|
1165 |
+
"outputs": [
|
1166 |
+
{
|
1167 |
+
"output_type": "execute_result",
|
1168 |
+
"data": {
|
1169 |
+
"text/plain": [
|
1170 |
+
"{'title': \"Beyond GPT-4: What's New?\",\n",
|
1171 |
+
" 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8',\n",
|
1172 |
+
" 'source_name': 'towards_ai',\n",
|
1173 |
+
" 'excerpt_keywords': 'Meta, Llama 2, Llama 2-Chat, Code Llama, LLMs, GPT-4, open-source, fine-tuning, benchmark, multimodal models, dialogue-centric applications, human-centric evaluations, AI development, code tasks, transparency.'}"
|
1174 |
+
]
|
1175 |
+
},
|
1176 |
+
"metadata": {},
|
1177 |
+
"execution_count": 15
|
1178 |
+
}
|
1179 |
+
]
|
1180 |
+
},
|
1181 |
{
|
1182 |
"cell_type": "code",
|
1183 |
"source": [
|