JAIGANESAN N commited on
Commit
25a6978
Β·
1 Parent(s): 2327a14

upgrade model from GPT-4o-mini to Gemini-1.5-flash

Browse files
Files changed (1) hide show
  1. notebooks/04_RAG_with_VectorStore.ipynb +108 -160
notebooks/04_RAG_with_VectorStore.ipynb CHANGED
@@ -21,75 +21,19 @@
21
  },
22
  {
23
  "cell_type": "code",
24
- "execution_count": null,
25
  "metadata": {
26
- "id": "QPJzr-I9XQ7l",
27
  "collapsed": true,
28
- "outputId": "dad24c44-2f42-4c37-a597-232ccffb9861",
29
- "colab": {
30
- "base_uri": "https://localhost:8080/"
31
- }
32
  },
33
- "outputs": [
34
- {
35
- "output_type": "stream",
36
- "name": "stdout",
37
- "text": [
38
- "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/67.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
39
- "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
40
- " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
41
- " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
42
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
43
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m150.7/150.7 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
44
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m867.6/867.6 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
45
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m337.0/337.0 kB\u001b[0m \u001b[31m28.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
46
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m679.1/679.1 kB\u001b[0m \u001b[31m42.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
47
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.5/15.5 MB\u001b[0m \u001b[31m65.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
48
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m559.5/559.5 kB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
49
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m74.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
50
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m273.8/273.8 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
51
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.0/94.0 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
52
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.4/76.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
53
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
54
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m71.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
55
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m63.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
56
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.9/302.9 kB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
57
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m23.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
58
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m56.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
59
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
60
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m91.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
61
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.0/64.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
62
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
63
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m149.7/149.7 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
64
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
65
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
66
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m90.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
67
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
68
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
69
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
70
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
71
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
72
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m187.4/187.4 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
73
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
74
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
75
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.8/295.8 kB\u001b[0m \u001b[31m22.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
76
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.4/71.4 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
77
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m83.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
78
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m425.7/425.7 kB\u001b[0m \u001b[31m30.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
79
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.3/157.3 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
80
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
81
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
82
- "\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
83
- ]
84
- }
85
- ],
86
  "source": [
87
  "!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
88
  ]
89
  },
90
  {
91
  "cell_type": "code",
92
- "execution_count": null,
93
  "metadata": {
94
  "id": "riuXwpSPcvWC"
95
  },
@@ -97,8 +41,12 @@
97
  "source": [
98
  "import os\n",
99
  "# Set the following API Keys in the Python environment. Will be used later.\n",
100
- "os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
101
- "os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
 
 
 
 
102
  ]
103
  },
104
  {
@@ -130,13 +78,13 @@
130
  },
131
  {
132
  "cell_type": "code",
133
- "execution_count": null,
134
  "metadata": {
135
  "colab": {
136
  "base_uri": "https://localhost:8080/"
137
  },
138
  "id": "-QTUkdfJjY4N",
139
- "outputId": "b43abf38-f483-41b6-eb39-c21aa7eca276"
140
  },
141
  "outputs": [
142
  {
@@ -145,7 +93,7 @@
145
  "text": [
146
  " % Total % Received % Xferd Average Speed Time Time Time Current\n",
147
  " Dload Upload Total Spent Left Speed\n",
148
- "100 169k 100 169k 0 0 559k 0 --:--:-- --:--:-- --:--:-- 557k\n"
149
  ]
150
  }
151
  ],
@@ -164,13 +112,13 @@
164
  },
165
  {
166
  "cell_type": "code",
167
- "execution_count": null,
168
  "metadata": {
169
  "colab": {
170
  "base_uri": "https://localhost:8080/"
171
  },
172
  "id": "7CYwRT6R0o0I",
173
- "outputId": "bdcf783d-c75b-4650-dafe-70f99ddd7e76"
174
  },
175
  "outputs": [
176
  {
@@ -210,13 +158,13 @@
210
  },
211
  {
212
  "cell_type": "code",
213
- "execution_count": null,
214
  "metadata": {
215
  "colab": {
216
  "base_uri": "https://localhost:8080/"
217
  },
218
  "id": "STACTMUR1z9N",
219
- "outputId": "bc0c4808-f709-4eee-bb07-0993a2cb8f73"
220
  },
221
  "outputs": [
222
  {
@@ -249,7 +197,7 @@
249
  },
250
  {
251
  "cell_type": "code",
252
- "execution_count": null,
253
  "metadata": {
254
  "id": "CtdsIUQ81_hT"
255
  },
@@ -272,7 +220,7 @@
272
  },
273
  {
274
  "cell_type": "code",
275
- "execution_count": null,
276
  "metadata": {
277
  "id": "mXi56KTXk2sp"
278
  },
@@ -288,7 +236,7 @@
288
  },
289
  {
290
  "cell_type": "code",
291
- "execution_count": null,
292
  "metadata": {
293
  "id": "jKXURvLtkuTS"
294
  },
@@ -304,38 +252,38 @@
304
  },
305
  {
306
  "cell_type": "code",
307
- "execution_count": null,
308
  "metadata": {
309
- "id": "WsD52wtrlESi",
310
- "outputId": "975aeeeb-df70-4946-d306-54aab19d3f09",
311
  "colab": {
312
  "base_uri": "https://localhost:8080/",
313
  "height": 81,
314
  "referenced_widgets": [
315
- "be409ad8ca7e42b2aac87e193d55d116",
316
- "2985c54fc3834d8599323f52075a01a6",
317
- "a96efe0fc89e42748f1c37fdc000056b",
318
- "29bbfc318ffd4a8e9452960f0f2ccb8d",
319
- "393c4f0d140c4259add663bf43767cbb",
320
- "77a5354e5209441bb6a69b71f96a2102",
321
- "4d682a386d1146cf828470083fba1fe6",
322
- "cf7bcdd679b9462285c619966a49f6d1",
323
- "2f0ec2b1e52d441ca835deb88cb9349f",
324
- "555508eb2f8c4caf81b623a8c157e742",
325
- "8035840c130f4804b9da0958d23713bc",
326
- "6d93958f663f48b4922a9524efb70e91",
327
- "4b42d724b989497faee4836a1e2dda70",
328
- "cbe2e4a95f2e412f83fed16bc5db08ad",
329
- "1f3d664867634613a30281f61ab33ac7",
330
- "aab9626f226c4c83908c3b042d6e4bdb",
331
- "eecd42e03f4d484c87032c25df7570b3",
332
- "1956d41b8b9540c99fb9b4a4df7bbaa2",
333
- "d800ddbadddd48ecbbaf0dd39035d275",
334
- "9d58bc10ef844753a17505aca55e079a",
335
- "91ca1a302884473f8314c097c41d03fd",
336
- "b71c84b4ca3443d29d650bb8ea0f5458"
337
  ]
338
- }
 
 
339
  },
340
  "outputs": [
341
  {
@@ -347,7 +295,7 @@
347
  "application/vnd.jupyter.widget-view+json": {
348
  "version_major": 2,
349
  "version_minor": 0,
350
- "model_id": "be409ad8ca7e42b2aac87e193d55d116"
351
  }
352
  },
353
  "metadata": {}
@@ -361,7 +309,7 @@
361
  "application/vnd.jupyter.widget-view+json": {
362
  "version_major": 2,
363
  "version_minor": 0,
364
- "model_id": "6d93958f663f48b4922a9524efb70e91"
365
  }
366
  },
367
  "metadata": {}
@@ -392,7 +340,7 @@
392
  },
393
  {
394
  "cell_type": "code",
395
- "execution_count": null,
396
  "metadata": {
397
  "id": "mzS13x1ZlZ5X"
398
  },
@@ -410,14 +358,14 @@
410
  },
411
  {
412
  "cell_type": "code",
413
- "execution_count": null,
414
  "metadata": {
 
415
  "colab": {
416
  "base_uri": "https://localhost:8080/",
417
  "height": 52
418
  },
419
- "id": "AYsQ4uLN_Oxg",
420
- "outputId": "1acd38f6-d083-4d4a-aff2-a0063561adc1"
421
  },
422
  "outputs": [
423
  {
@@ -445,7 +393,7 @@
445
  },
446
  {
447
  "cell_type": "code",
448
- "execution_count": null,
449
  "metadata": {
450
  "id": "SMPAniL2e4NP"
451
  },
@@ -468,7 +416,7 @@
468
  },
469
  {
470
  "cell_type": "code",
471
- "execution_count": null,
472
  "metadata": {
473
  "id": "2xas7HkuhJ8A"
474
  },
@@ -499,7 +447,7 @@
499
  },
500
  {
501
  "cell_type": "code",
502
- "execution_count": null,
503
  "metadata": {
504
  "id": "-H64YLxshM2b"
505
  },
@@ -519,20 +467,20 @@
519
  },
520
  {
521
  "cell_type": "code",
522
- "execution_count": null,
523
  "metadata": {
 
524
  "colab": {
525
  "base_uri": "https://localhost:8080/"
526
  },
527
- "id": "AxBqPNtthPaa",
528
- "outputId": "138a1238-97b8-41e1-9fd7-d655997d0743"
529
  },
530
  "outputs": [
531
  {
532
  "output_type": "stream",
533
  "name": "stdout",
534
  "text": [
535
- "I'm sorry, but the provided context doesn't mention the number of parameters for the LLaMA2 model. \n",
536
  "\n"
537
  ]
538
  }
@@ -540,8 +488,8 @@
540
  "source": [
541
  "from langchain.chains import RetrievalQA\n",
542
  "\n",
543
- "query = \"How many parameters LLaMA2 model has?\"\n",
544
- "retriever = chroma_db.as_retriever(search_kwargs={\"k\": 2})\n",
545
  "# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
546
  "# and using a LLM to formulate the final answer.\n",
547
  "chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
@@ -552,12 +500,12 @@
552
  },
553
  {
554
  "cell_type": "code",
555
- "source": [],
556
  "metadata": {
557
  "id": "AKr16L_kwyYX"
558
  },
559
- "execution_count": null,
560
- "outputs": []
561
  }
562
  ],
563
  "metadata": {
@@ -583,7 +531,7 @@
583
  },
584
  "widgets": {
585
  "application/vnd.jupyter.widget-state+json": {
586
- "be409ad8ca7e42b2aac87e193d55d116": {
587
  "model_module": "@jupyter-widgets/controls",
588
  "model_name": "HBoxModel",
589
  "model_module_version": "1.5.0",
@@ -598,14 +546,14 @@
598
  "_view_name": "HBoxView",
599
  "box_style": "",
600
  "children": [
601
- "IPY_MODEL_2985c54fc3834d8599323f52075a01a6",
602
- "IPY_MODEL_a96efe0fc89e42748f1c37fdc000056b",
603
- "IPY_MODEL_29bbfc318ffd4a8e9452960f0f2ccb8d"
604
  ],
605
- "layout": "IPY_MODEL_393c4f0d140c4259add663bf43767cbb"
606
  }
607
  },
608
- "2985c54fc3834d8599323f52075a01a6": {
609
  "model_module": "@jupyter-widgets/controls",
610
  "model_name": "HTMLModel",
611
  "model_module_version": "1.5.0",
@@ -620,13 +568,13 @@
620
  "_view_name": "HTMLView",
621
  "description": "",
622
  "description_tooltip": null,
623
- "layout": "IPY_MODEL_77a5354e5209441bb6a69b71f96a2102",
624
  "placeholder": "​",
625
- "style": "IPY_MODEL_4d682a386d1146cf828470083fba1fe6",
626
  "value": "Parsing nodes: 100%"
627
  }
628
  },
629
- "a96efe0fc89e42748f1c37fdc000056b": {
630
  "model_module": "@jupyter-widgets/controls",
631
  "model_name": "FloatProgressModel",
632
  "model_module_version": "1.5.0",
@@ -642,15 +590,15 @@
642
  "bar_style": "success",
643
  "description": "",
644
  "description_tooltip": null,
645
- "layout": "IPY_MODEL_cf7bcdd679b9462285c619966a49f6d1",
646
  "max": 335,
647
  "min": 0,
648
  "orientation": "horizontal",
649
- "style": "IPY_MODEL_2f0ec2b1e52d441ca835deb88cb9349f",
650
  "value": 335
651
  }
652
  },
653
- "29bbfc318ffd4a8e9452960f0f2ccb8d": {
654
  "model_module": "@jupyter-widgets/controls",
655
  "model_name": "HTMLModel",
656
  "model_module_version": "1.5.0",
@@ -665,13 +613,13 @@
665
  "_view_name": "HTMLView",
666
  "description": "",
667
  "description_tooltip": null,
668
- "layout": "IPY_MODEL_555508eb2f8c4caf81b623a8c157e742",
669
  "placeholder": "​",
670
- "style": "IPY_MODEL_8035840c130f4804b9da0958d23713bc",
671
- "value": " 335/335 [00:00&lt;00:00, 599.37it/s]"
672
  }
673
  },
674
- "393c4f0d140c4259add663bf43767cbb": {
675
  "model_module": "@jupyter-widgets/base",
676
  "model_name": "LayoutModel",
677
  "model_module_version": "1.2.0",
@@ -723,7 +671,7 @@
723
  "width": null
724
  }
725
  },
726
- "77a5354e5209441bb6a69b71f96a2102": {
727
  "model_module": "@jupyter-widgets/base",
728
  "model_name": "LayoutModel",
729
  "model_module_version": "1.2.0",
@@ -775,7 +723,7 @@
775
  "width": null
776
  }
777
  },
778
- "4d682a386d1146cf828470083fba1fe6": {
779
  "model_module": "@jupyter-widgets/controls",
780
  "model_name": "DescriptionStyleModel",
781
  "model_module_version": "1.5.0",
@@ -790,7 +738,7 @@
790
  "description_width": ""
791
  }
792
  },
793
- "cf7bcdd679b9462285c619966a49f6d1": {
794
  "model_module": "@jupyter-widgets/base",
795
  "model_name": "LayoutModel",
796
  "model_module_version": "1.2.0",
@@ -842,7 +790,7 @@
842
  "width": null
843
  }
844
  },
845
- "2f0ec2b1e52d441ca835deb88cb9349f": {
846
  "model_module": "@jupyter-widgets/controls",
847
  "model_name": "ProgressStyleModel",
848
  "model_module_version": "1.5.0",
@@ -858,7 +806,7 @@
858
  "description_width": ""
859
  }
860
  },
861
- "555508eb2f8c4caf81b623a8c157e742": {
862
  "model_module": "@jupyter-widgets/base",
863
  "model_name": "LayoutModel",
864
  "model_module_version": "1.2.0",
@@ -910,7 +858,7 @@
910
  "width": null
911
  }
912
  },
913
- "8035840c130f4804b9da0958d23713bc": {
914
  "model_module": "@jupyter-widgets/controls",
915
  "model_name": "DescriptionStyleModel",
916
  "model_module_version": "1.5.0",
@@ -925,7 +873,7 @@
925
  "description_width": ""
926
  }
927
  },
928
- "6d93958f663f48b4922a9524efb70e91": {
929
  "model_module": "@jupyter-widgets/controls",
930
  "model_name": "HBoxModel",
931
  "model_module_version": "1.5.0",
@@ -940,14 +888,14 @@
940
  "_view_name": "HBoxView",
941
  "box_style": "",
942
  "children": [
943
- "IPY_MODEL_4b42d724b989497faee4836a1e2dda70",
944
- "IPY_MODEL_cbe2e4a95f2e412f83fed16bc5db08ad",
945
- "IPY_MODEL_1f3d664867634613a30281f61ab33ac7"
946
  ],
947
- "layout": "IPY_MODEL_aab9626f226c4c83908c3b042d6e4bdb"
948
  }
949
  },
950
- "4b42d724b989497faee4836a1e2dda70": {
951
  "model_module": "@jupyter-widgets/controls",
952
  "model_name": "HTMLModel",
953
  "model_module_version": "1.5.0",
@@ -962,13 +910,13 @@
962
  "_view_name": "HTMLView",
963
  "description": "",
964
  "description_tooltip": null,
965
- "layout": "IPY_MODEL_eecd42e03f4d484c87032c25df7570b3",
966
  "placeholder": "​",
967
- "style": "IPY_MODEL_1956d41b8b9540c99fb9b4a4df7bbaa2",
968
  "value": "Generating embeddings: 100%"
969
  }
970
  },
971
- "cbe2e4a95f2e412f83fed16bc5db08ad": {
972
  "model_module": "@jupyter-widgets/controls",
973
  "model_name": "FloatProgressModel",
974
  "model_module_version": "1.5.0",
@@ -984,15 +932,15 @@
984
  "bar_style": "success",
985
  "description": "",
986
  "description_tooltip": null,
987
- "layout": "IPY_MODEL_d800ddbadddd48ecbbaf0dd39035d275",
988
  "max": 335,
989
  "min": 0,
990
  "orientation": "horizontal",
991
- "style": "IPY_MODEL_9d58bc10ef844753a17505aca55e079a",
992
  "value": 335
993
  }
994
  },
995
- "1f3d664867634613a30281f61ab33ac7": {
996
  "model_module": "@jupyter-widgets/controls",
997
  "model_name": "HTMLModel",
998
  "model_module_version": "1.5.0",
@@ -1007,13 +955,13 @@
1007
  "_view_name": "HTMLView",
1008
  "description": "",
1009
  "description_tooltip": null,
1010
- "layout": "IPY_MODEL_91ca1a302884473f8314c097c41d03fd",
1011
  "placeholder": "​",
1012
- "style": "IPY_MODEL_b71c84b4ca3443d29d650bb8ea0f5458",
1013
- "value": " 335/335 [00:05&lt;00:00, 58.54it/s]"
1014
  }
1015
  },
1016
- "aab9626f226c4c83908c3b042d6e4bdb": {
1017
  "model_module": "@jupyter-widgets/base",
1018
  "model_name": "LayoutModel",
1019
  "model_module_version": "1.2.0",
@@ -1065,7 +1013,7 @@
1065
  "width": null
1066
  }
1067
  },
1068
- "eecd42e03f4d484c87032c25df7570b3": {
1069
  "model_module": "@jupyter-widgets/base",
1070
  "model_name": "LayoutModel",
1071
  "model_module_version": "1.2.0",
@@ -1117,7 +1065,7 @@
1117
  "width": null
1118
  }
1119
  },
1120
- "1956d41b8b9540c99fb9b4a4df7bbaa2": {
1121
  "model_module": "@jupyter-widgets/controls",
1122
  "model_name": "DescriptionStyleModel",
1123
  "model_module_version": "1.5.0",
@@ -1132,7 +1080,7 @@
1132
  "description_width": ""
1133
  }
1134
  },
1135
- "d800ddbadddd48ecbbaf0dd39035d275": {
1136
  "model_module": "@jupyter-widgets/base",
1137
  "model_name": "LayoutModel",
1138
  "model_module_version": "1.2.0",
@@ -1184,7 +1132,7 @@
1184
  "width": null
1185
  }
1186
  },
1187
- "9d58bc10ef844753a17505aca55e079a": {
1188
  "model_module": "@jupyter-widgets/controls",
1189
  "model_name": "ProgressStyleModel",
1190
  "model_module_version": "1.5.0",
@@ -1200,7 +1148,7 @@
1200
  "description_width": ""
1201
  }
1202
  },
1203
- "91ca1a302884473f8314c097c41d03fd": {
1204
  "model_module": "@jupyter-widgets/base",
1205
  "model_name": "LayoutModel",
1206
  "model_module_version": "1.2.0",
@@ -1252,7 +1200,7 @@
1252
  "width": null
1253
  }
1254
  },
1255
- "b71c84b4ca3443d29d650bb8ea0f5458": {
1256
  "model_module": "@jupyter-widgets/controls",
1257
  "model_name": "DescriptionStyleModel",
1258
  "model_module_version": "1.5.0",
 
21
  },
22
  {
23
  "cell_type": "code",
24
+ "execution_count": 3,
25
  "metadata": {
 
26
  "collapsed": true,
27
+ "id": "QPJzr-I9XQ7l"
 
 
 
28
  },
29
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  "source": [
31
  "!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
32
  ]
33
  },
34
  {
35
  "cell_type": "code",
36
+ "execution_count": 15,
37
  "metadata": {
38
  "id": "riuXwpSPcvWC"
39
  },
 
41
  "source": [
42
  "import os\n",
43
  "# Set the following API Keys in the Python environment. Will be used later.\n",
44
+ "# os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
45
+ "# os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
46
+ "\n",
47
+ "from google.colab import userdata\n",
48
+ "os.environ[\"OPENAI_API_KEY\"] = userdata.get('openai_api_key')\n",
49
+ "os.environ[\"GOOGLE_API_KEY\"] = userdata.get('Google_api_key')"
50
  ]
51
  },
52
  {
 
78
  },
79
  {
80
  "cell_type": "code",
81
+ "execution_count": 5,
82
  "metadata": {
83
  "colab": {
84
  "base_uri": "https://localhost:8080/"
85
  },
86
  "id": "-QTUkdfJjY4N",
87
+ "outputId": "34becd46-808a-42ee-e620-3e6b18f79e1d"
88
  },
89
  "outputs": [
90
  {
 
93
  "text": [
94
  " % Total % Received % Xferd Average Speed Time Time Time Current\n",
95
  " Dload Upload Total Spent Left Speed\n",
96
+ "100 169k 100 169k 0 0 609k 0 --:--:-- --:--:-- --:--:-- 612k\n"
97
  ]
98
  }
99
  ],
 
112
  },
113
  {
114
  "cell_type": "code",
115
+ "execution_count": 6,
116
  "metadata": {
117
  "colab": {
118
  "base_uri": "https://localhost:8080/"
119
  },
120
  "id": "7CYwRT6R0o0I",
121
+ "outputId": "394603bd-6d33-40aa-8e06-6ef802879234"
122
  },
123
  "outputs": [
124
  {
 
158
  },
159
  {
160
  "cell_type": "code",
161
+ "execution_count": 7,
162
  "metadata": {
163
  "colab": {
164
  "base_uri": "https://localhost:8080/"
165
  },
166
  "id": "STACTMUR1z9N",
167
+ "outputId": "d5360ce2-2c1e-459b-a3b3-e9899fe762b5"
168
  },
169
  "outputs": [
170
  {
 
197
  },
198
  {
199
  "cell_type": "code",
200
+ "execution_count": 8,
201
  "metadata": {
202
  "id": "CtdsIUQ81_hT"
203
  },
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": 9,
224
  "metadata": {
225
  "id": "mXi56KTXk2sp"
226
  },
 
236
  },
237
  {
238
  "cell_type": "code",
239
+ "execution_count": 10,
240
  "metadata": {
241
  "id": "jKXURvLtkuTS"
242
  },
 
252
  },
253
  {
254
  "cell_type": "code",
255
+ "execution_count": 16,
256
  "metadata": {
 
 
257
  "colab": {
258
  "base_uri": "https://localhost:8080/",
259
  "height": 81,
260
  "referenced_widgets": [
261
+ "1a0185d42be8489c87874049e5d78424",
262
+ "e91d7972a14b4444808d649d5db15b7a",
263
+ "bd3eab2dfee94512b88d88fbd4cb3682",
264
+ "3ba2fa0f0c8449c3a22ff3593d2b6629",
265
+ "eb7ce1338f6a4c9a8fb9a92e8de78821",
266
+ "d9daeb567dcc4387a7ba406a559aa422",
267
+ "2a99f51fa5c24ce09f629d9d5322879d",
268
+ "edfd151ed26646d8a6d293a3cf1ecce6",
269
+ "032b979544624bd4a9f7eb91fa9dd2e8",
270
+ "28d35749a3fa4c6f80f626221f95cde1",
271
+ "3d78bf2951e04c21bd89c1d944412e5a",
272
+ "a0991085ef794c8cbf509370b67df911",
273
+ "780fa2ff5938403cb2c109c491368dce",
274
+ "f833fd603aa543f59a7e93fe980935cc",
275
+ "48e949bbaf7c4079bbe8fcf620066b8e",
276
+ "78fd41df7f604f0290dc034c9f01a18c",
277
+ "d2df0b3067574d46b951890b996a5751",
278
+ "b51937856bf64803a85ea7eb30f73cfe",
279
+ "74fe3cd416994417a2138d8a32beeed8",
280
+ "80626b461cce49e7bcb6e3e931c5d81c",
281
+ "23f0bdb422384eaf94a69d20502fdbe4",
282
+ "dfa74d96a1174e7ead6554b5c984f526"
283
  ]
284
+ },
285
+ "id": "WsD52wtrlESi",
286
+ "outputId": "2d522a85-cdea-477b-a693-e26b404c8ed9"
287
  },
288
  "outputs": [
289
  {
 
295
  "application/vnd.jupyter.widget-view+json": {
296
  "version_major": 2,
297
  "version_minor": 0,
298
+ "model_id": "1a0185d42be8489c87874049e5d78424"
299
  }
300
  },
301
  "metadata": {}
 
309
  "application/vnd.jupyter.widget-view+json": {
310
  "version_major": 2,
311
  "version_minor": 0,
312
+ "model_id": "a0991085ef794c8cbf509370b67df911"
313
  }
314
  },
315
  "metadata": {}
 
340
  },
341
  {
342
  "cell_type": "code",
343
+ "execution_count": 17,
344
  "metadata": {
345
  "id": "mzS13x1ZlZ5X"
346
  },
 
358
  },
359
  {
360
  "cell_type": "code",
361
+ "execution_count": 18,
362
  "metadata": {
363
+ "id": "AYsQ4uLN_Oxg",
364
  "colab": {
365
  "base_uri": "https://localhost:8080/",
366
  "height": 52
367
  },
368
+ "outputId": "f56876cc-f7bc-4e63-bb7b-9515e9b404cc"
 
369
  },
370
  "outputs": [
371
  {
 
393
  },
394
  {
395
  "cell_type": "code",
396
+ "execution_count": 19,
397
  "metadata": {
398
  "id": "SMPAniL2e4NP"
399
  },
 
416
  },
417
  {
418
  "cell_type": "code",
419
+ "execution_count": 20,
420
  "metadata": {
421
  "id": "2xas7HkuhJ8A"
422
  },
 
447
  },
448
  {
449
  "cell_type": "code",
450
+ "execution_count": 21,
451
  "metadata": {
452
  "id": "-H64YLxshM2b"
453
  },
 
467
  },
468
  {
469
  "cell_type": "code",
470
+ "execution_count": 25,
471
  "metadata": {
472
+ "id": "AxBqPNtthPaa",
473
  "colab": {
474
  "base_uri": "https://localhost:8080/"
475
  },
476
+ "outputId": "607b082a-66c2-49a2-ca59-b3cb85bf6067"
 
477
  },
478
  "outputs": [
479
  {
480
  "output_type": "stream",
481
  "name": "stdout",
482
  "text": [
483
+ "The LLaMA 2 model comes in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
484
  "\n"
485
  ]
486
  }
 
488
  "source": [
489
  "from langchain.chains import RetrievalQA\n",
490
  "\n",
491
+ "query = \"How many parameters LLaMA 2 model has?\"\n",
492
+ "retriever = chroma_db.as_retriever(search_kwargs={\"k\": 4})\n",
493
  "# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
494
  "# and using a LLM to formulate the final answer.\n",
495
  "chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
 
500
  },
501
  {
502
  "cell_type": "code",
503
+ "execution_count": null,
504
  "metadata": {
505
  "id": "AKr16L_kwyYX"
506
  },
507
+ "outputs": [],
508
+ "source": []
509
  }
510
  ],
511
  "metadata": {
 
531
  },
532
  "widgets": {
533
  "application/vnd.jupyter.widget-state+json": {
534
+ "1a0185d42be8489c87874049e5d78424": {
535
  "model_module": "@jupyter-widgets/controls",
536
  "model_name": "HBoxModel",
537
  "model_module_version": "1.5.0",
 
546
  "_view_name": "HBoxView",
547
  "box_style": "",
548
  "children": [
549
+ "IPY_MODEL_e91d7972a14b4444808d649d5db15b7a",
550
+ "IPY_MODEL_bd3eab2dfee94512b88d88fbd4cb3682",
551
+ "IPY_MODEL_3ba2fa0f0c8449c3a22ff3593d2b6629"
552
  ],
553
+ "layout": "IPY_MODEL_eb7ce1338f6a4c9a8fb9a92e8de78821"
554
  }
555
  },
556
+ "e91d7972a14b4444808d649d5db15b7a": {
557
  "model_module": "@jupyter-widgets/controls",
558
  "model_name": "HTMLModel",
559
  "model_module_version": "1.5.0",
 
568
  "_view_name": "HTMLView",
569
  "description": "",
570
  "description_tooltip": null,
571
+ "layout": "IPY_MODEL_d9daeb567dcc4387a7ba406a559aa422",
572
  "placeholder": "​",
573
+ "style": "IPY_MODEL_2a99f51fa5c24ce09f629d9d5322879d",
574
  "value": "Parsing nodes: 100%"
575
  }
576
  },
577
+ "bd3eab2dfee94512b88d88fbd4cb3682": {
578
  "model_module": "@jupyter-widgets/controls",
579
  "model_name": "FloatProgressModel",
580
  "model_module_version": "1.5.0",
 
590
  "bar_style": "success",
591
  "description": "",
592
  "description_tooltip": null,
593
+ "layout": "IPY_MODEL_edfd151ed26646d8a6d293a3cf1ecce6",
594
  "max": 335,
595
  "min": 0,
596
  "orientation": "horizontal",
597
+ "style": "IPY_MODEL_032b979544624bd4a9f7eb91fa9dd2e8",
598
  "value": 335
599
  }
600
  },
601
+ "3ba2fa0f0c8449c3a22ff3593d2b6629": {
602
  "model_module": "@jupyter-widgets/controls",
603
  "model_name": "HTMLModel",
604
  "model_module_version": "1.5.0",
 
613
  "_view_name": "HTMLView",
614
  "description": "",
615
  "description_tooltip": null,
616
+ "layout": "IPY_MODEL_28d35749a3fa4c6f80f626221f95cde1",
617
  "placeholder": "​",
618
+ "style": "IPY_MODEL_3d78bf2951e04c21bd89c1d944412e5a",
619
+ "value": " 335/335 [00:00&lt;00:00, 3304.59it/s]"
620
  }
621
  },
622
+ "eb7ce1338f6a4c9a8fb9a92e8de78821": {
623
  "model_module": "@jupyter-widgets/base",
624
  "model_name": "LayoutModel",
625
  "model_module_version": "1.2.0",
 
671
  "width": null
672
  }
673
  },
674
+ "d9daeb567dcc4387a7ba406a559aa422": {
675
  "model_module": "@jupyter-widgets/base",
676
  "model_name": "LayoutModel",
677
  "model_module_version": "1.2.0",
 
723
  "width": null
724
  }
725
  },
726
+ "2a99f51fa5c24ce09f629d9d5322879d": {
727
  "model_module": "@jupyter-widgets/controls",
728
  "model_name": "DescriptionStyleModel",
729
  "model_module_version": "1.5.0",
 
738
  "description_width": ""
739
  }
740
  },
741
+ "edfd151ed26646d8a6d293a3cf1ecce6": {
742
  "model_module": "@jupyter-widgets/base",
743
  "model_name": "LayoutModel",
744
  "model_module_version": "1.2.0",
 
790
  "width": null
791
  }
792
  },
793
+ "032b979544624bd4a9f7eb91fa9dd2e8": {
794
  "model_module": "@jupyter-widgets/controls",
795
  "model_name": "ProgressStyleModel",
796
  "model_module_version": "1.5.0",
 
806
  "description_width": ""
807
  }
808
  },
809
+ "28d35749a3fa4c6f80f626221f95cde1": {
810
  "model_module": "@jupyter-widgets/base",
811
  "model_name": "LayoutModel",
812
  "model_module_version": "1.2.0",
 
858
  "width": null
859
  }
860
  },
861
+ "3d78bf2951e04c21bd89c1d944412e5a": {
862
  "model_module": "@jupyter-widgets/controls",
863
  "model_name": "DescriptionStyleModel",
864
  "model_module_version": "1.5.0",
 
873
  "description_width": ""
874
  }
875
  },
876
+ "a0991085ef794c8cbf509370b67df911": {
877
  "model_module": "@jupyter-widgets/controls",
878
  "model_name": "HBoxModel",
879
  "model_module_version": "1.5.0",
 
888
  "_view_name": "HBoxView",
889
  "box_style": "",
890
  "children": [
891
+ "IPY_MODEL_780fa2ff5938403cb2c109c491368dce",
892
+ "IPY_MODEL_f833fd603aa543f59a7e93fe980935cc",
893
+ "IPY_MODEL_48e949bbaf7c4079bbe8fcf620066b8e"
894
  ],
895
+ "layout": "IPY_MODEL_78fd41df7f604f0290dc034c9f01a18c"
896
  }
897
  },
898
+ "780fa2ff5938403cb2c109c491368dce": {
899
  "model_module": "@jupyter-widgets/controls",
900
  "model_name": "HTMLModel",
901
  "model_module_version": "1.5.0",
 
910
  "_view_name": "HTMLView",
911
  "description": "",
912
  "description_tooltip": null,
913
+ "layout": "IPY_MODEL_d2df0b3067574d46b951890b996a5751",
914
  "placeholder": "​",
915
+ "style": "IPY_MODEL_b51937856bf64803a85ea7eb30f73cfe",
916
  "value": "Generating embeddings: 100%"
917
  }
918
  },
919
+ "f833fd603aa543f59a7e93fe980935cc": {
920
  "model_module": "@jupyter-widgets/controls",
921
  "model_name": "FloatProgressModel",
922
  "model_module_version": "1.5.0",
 
932
  "bar_style": "success",
933
  "description": "",
934
  "description_tooltip": null,
935
+ "layout": "IPY_MODEL_74fe3cd416994417a2138d8a32beeed8",
936
  "max": 335,
937
  "min": 0,
938
  "orientation": "horizontal",
939
+ "style": "IPY_MODEL_80626b461cce49e7bcb6e3e931c5d81c",
940
  "value": 335
941
  }
942
  },
943
+ "48e949bbaf7c4079bbe8fcf620066b8e": {
944
  "model_module": "@jupyter-widgets/controls",
945
  "model_name": "HTMLModel",
946
  "model_module_version": "1.5.0",
 
955
  "_view_name": "HTMLView",
956
  "description": "",
957
  "description_tooltip": null,
958
+ "layout": "IPY_MODEL_23f0bdb422384eaf94a69d20502fdbe4",
959
  "placeholder": "​",
960
+ "style": "IPY_MODEL_dfa74d96a1174e7ead6554b5c984f526",
961
+ "value": " 335/335 [00:03&lt;00:00, 89.38it/s]"
962
  }
963
  },
964
+ "78fd41df7f604f0290dc034c9f01a18c": {
965
  "model_module": "@jupyter-widgets/base",
966
  "model_name": "LayoutModel",
967
  "model_module_version": "1.2.0",
 
1013
  "width": null
1014
  }
1015
  },
1016
+ "d2df0b3067574d46b951890b996a5751": {
1017
  "model_module": "@jupyter-widgets/base",
1018
  "model_name": "LayoutModel",
1019
  "model_module_version": "1.2.0",
 
1065
  "width": null
1066
  }
1067
  },
1068
+ "b51937856bf64803a85ea7eb30f73cfe": {
1069
  "model_module": "@jupyter-widgets/controls",
1070
  "model_name": "DescriptionStyleModel",
1071
  "model_module_version": "1.5.0",
 
1080
  "description_width": ""
1081
  }
1082
  },
1083
+ "74fe3cd416994417a2138d8a32beeed8": {
1084
  "model_module": "@jupyter-widgets/base",
1085
  "model_name": "LayoutModel",
1086
  "model_module_version": "1.2.0",
 
1132
  "width": null
1133
  }
1134
  },
1135
+ "80626b461cce49e7bcb6e3e931c5d81c": {
1136
  "model_module": "@jupyter-widgets/controls",
1137
  "model_name": "ProgressStyleModel",
1138
  "model_module_version": "1.5.0",
 
1148
  "description_width": ""
1149
  }
1150
  },
1151
+ "23f0bdb422384eaf94a69d20502fdbe4": {
1152
  "model_module": "@jupyter-widgets/base",
1153
  "model_name": "LayoutModel",
1154
  "model_module_version": "1.2.0",
 
1200
  "width": null
1201
  }
1202
  },
1203
+ "dfa74d96a1174e7ead6554b5c984f526": {
1204
  "model_module": "@jupyter-widgets/controls",
1205
  "model_name": "DescriptionStyleModel",
1206
  "model_module_version": "1.5.0",