JAIGANESAN N
commited on
Commit
Β·
25a6978
1
Parent(s):
2327a14
upgrade model from GPT-4o-mini to Gemini-1.5-flash
Browse files- notebooks/04_RAG_with_VectorStore.ipynb +108 -160
notebooks/04_RAG_with_VectorStore.ipynb
CHANGED
@@ -21,75 +21,19 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"metadata": {
|
26 |
-
"id": "QPJzr-I9XQ7l",
|
27 |
"collapsed": true,
|
28 |
-
"
|
29 |
-
"colab": {
|
30 |
-
"base_uri": "https://localhost:8080/"
|
31 |
-
}
|
32 |
},
|
33 |
-
"outputs": [
|
34 |
-
{
|
35 |
-
"output_type": "stream",
|
36 |
-
"name": "stdout",
|
37 |
-
"text": [
|
38 |
-
"\u001b[?25l \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m0.0/67.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
39 |
-
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
40 |
-
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
41 |
-
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
42 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
43 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m150.7/150.7 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
44 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m867.6/867.6 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
45 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m337.0/337.0 kB\u001b[0m \u001b[31m28.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
46 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m679.1/679.1 kB\u001b[0m \u001b[31m42.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
47 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.5/15.5 MB\u001b[0m \u001b[31m65.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
48 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m559.5/559.5 kB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
49 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m74.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
50 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m273.8/273.8 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
51 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m94.0/94.0 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
52 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m76.4/76.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
53 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
54 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m71.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m63.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
56 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m302.9/302.9 kB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
57 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m23.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
58 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m56.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
59 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
60 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m91.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
61 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m64.0/64.0 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
62 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
63 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m149.7/149.7 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
64 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
65 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
66 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m90.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
68 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
70 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
71 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
72 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m187.4/187.4 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
73 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
74 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
75 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m295.8/295.8 kB\u001b[0m \u001b[31m22.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
76 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.4/71.4 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
77 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m83.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
78 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m425.7/425.7 kB\u001b[0m \u001b[31m30.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
79 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m157.3/157.3 kB\u001b[0m \u001b[31m12.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
80 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
81 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
82 |
-
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
|
83 |
-
]
|
84 |
-
}
|
85 |
-
],
|
86 |
"source": [
|
87 |
"!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
|
88 |
]
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
-
"execution_count":
|
93 |
"metadata": {
|
94 |
"id": "riuXwpSPcvWC"
|
95 |
},
|
@@ -97,8 +41,12 @@
|
|
97 |
"source": [
|
98 |
"import os\n",
|
99 |
"# Set the following API Keys in the Python environment. Will be used later.\n",
|
100 |
-
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
|
101 |
-
"os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
|
|
|
|
|
|
|
|
|
102 |
]
|
103 |
},
|
104 |
{
|
@@ -130,13 +78,13 @@
|
|
130 |
},
|
131 |
{
|
132 |
"cell_type": "code",
|
133 |
-
"execution_count":
|
134 |
"metadata": {
|
135 |
"colab": {
|
136 |
"base_uri": "https://localhost:8080/"
|
137 |
},
|
138 |
"id": "-QTUkdfJjY4N",
|
139 |
-
"outputId": "
|
140 |
},
|
141 |
"outputs": [
|
142 |
{
|
@@ -145,7 +93,7 @@
|
|
145 |
"text": [
|
146 |
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
|
147 |
" Dload Upload Total Spent Left Speed\n",
|
148 |
-
"100 169k 100 169k 0 0
|
149 |
]
|
150 |
}
|
151 |
],
|
@@ -164,13 +112,13 @@
|
|
164 |
},
|
165 |
{
|
166 |
"cell_type": "code",
|
167 |
-
"execution_count":
|
168 |
"metadata": {
|
169 |
"colab": {
|
170 |
"base_uri": "https://localhost:8080/"
|
171 |
},
|
172 |
"id": "7CYwRT6R0o0I",
|
173 |
-
"outputId": "
|
174 |
},
|
175 |
"outputs": [
|
176 |
{
|
@@ -210,13 +158,13 @@
|
|
210 |
},
|
211 |
{
|
212 |
"cell_type": "code",
|
213 |
-
"execution_count":
|
214 |
"metadata": {
|
215 |
"colab": {
|
216 |
"base_uri": "https://localhost:8080/"
|
217 |
},
|
218 |
"id": "STACTMUR1z9N",
|
219 |
-
"outputId": "
|
220 |
},
|
221 |
"outputs": [
|
222 |
{
|
@@ -249,7 +197,7 @@
|
|
249 |
},
|
250 |
{
|
251 |
"cell_type": "code",
|
252 |
-
"execution_count":
|
253 |
"metadata": {
|
254 |
"id": "CtdsIUQ81_hT"
|
255 |
},
|
@@ -272,7 +220,7 @@
|
|
272 |
},
|
273 |
{
|
274 |
"cell_type": "code",
|
275 |
-
"execution_count":
|
276 |
"metadata": {
|
277 |
"id": "mXi56KTXk2sp"
|
278 |
},
|
@@ -288,7 +236,7 @@
|
|
288 |
},
|
289 |
{
|
290 |
"cell_type": "code",
|
291 |
-
"execution_count":
|
292 |
"metadata": {
|
293 |
"id": "jKXURvLtkuTS"
|
294 |
},
|
@@ -304,38 +252,38 @@
|
|
304 |
},
|
305 |
{
|
306 |
"cell_type": "code",
|
307 |
-
"execution_count":
|
308 |
"metadata": {
|
309 |
-
"id": "WsD52wtrlESi",
|
310 |
-
"outputId": "975aeeeb-df70-4946-d306-54aab19d3f09",
|
311 |
"colab": {
|
312 |
"base_uri": "https://localhost:8080/",
|
313 |
"height": 81,
|
314 |
"referenced_widgets": [
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
-
"
|
319 |
-
"
|
320 |
-
"
|
321 |
-
"
|
322 |
-
"
|
323 |
-
"
|
324 |
-
"
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"
|
332 |
-
"
|
333 |
-
"
|
334 |
-
"
|
335 |
-
"
|
336 |
-
"
|
337 |
]
|
338 |
-
}
|
|
|
|
|
339 |
},
|
340 |
"outputs": [
|
341 |
{
|
@@ -347,7 +295,7 @@
|
|
347 |
"application/vnd.jupyter.widget-view+json": {
|
348 |
"version_major": 2,
|
349 |
"version_minor": 0,
|
350 |
-
"model_id": "
|
351 |
}
|
352 |
},
|
353 |
"metadata": {}
|
@@ -361,7 +309,7 @@
|
|
361 |
"application/vnd.jupyter.widget-view+json": {
|
362 |
"version_major": 2,
|
363 |
"version_minor": 0,
|
364 |
-
"model_id": "
|
365 |
}
|
366 |
},
|
367 |
"metadata": {}
|
@@ -392,7 +340,7 @@
|
|
392 |
},
|
393 |
{
|
394 |
"cell_type": "code",
|
395 |
-
"execution_count":
|
396 |
"metadata": {
|
397 |
"id": "mzS13x1ZlZ5X"
|
398 |
},
|
@@ -410,14 +358,14 @@
|
|
410 |
},
|
411 |
{
|
412 |
"cell_type": "code",
|
413 |
-
"execution_count":
|
414 |
"metadata": {
|
|
|
415 |
"colab": {
|
416 |
"base_uri": "https://localhost:8080/",
|
417 |
"height": 52
|
418 |
},
|
419 |
-
"
|
420 |
-
"outputId": "1acd38f6-d083-4d4a-aff2-a0063561adc1"
|
421 |
},
|
422 |
"outputs": [
|
423 |
{
|
@@ -445,7 +393,7 @@
|
|
445 |
},
|
446 |
{
|
447 |
"cell_type": "code",
|
448 |
-
"execution_count":
|
449 |
"metadata": {
|
450 |
"id": "SMPAniL2e4NP"
|
451 |
},
|
@@ -468,7 +416,7 @@
|
|
468 |
},
|
469 |
{
|
470 |
"cell_type": "code",
|
471 |
-
"execution_count":
|
472 |
"metadata": {
|
473 |
"id": "2xas7HkuhJ8A"
|
474 |
},
|
@@ -499,7 +447,7 @@
|
|
499 |
},
|
500 |
{
|
501 |
"cell_type": "code",
|
502 |
-
"execution_count":
|
503 |
"metadata": {
|
504 |
"id": "-H64YLxshM2b"
|
505 |
},
|
@@ -519,20 +467,20 @@
|
|
519 |
},
|
520 |
{
|
521 |
"cell_type": "code",
|
522 |
-
"execution_count":
|
523 |
"metadata": {
|
|
|
524 |
"colab": {
|
525 |
"base_uri": "https://localhost:8080/"
|
526 |
},
|
527 |
-
"
|
528 |
-
"outputId": "138a1238-97b8-41e1-9fd7-d655997d0743"
|
529 |
},
|
530 |
"outputs": [
|
531 |
{
|
532 |
"output_type": "stream",
|
533 |
"name": "stdout",
|
534 |
"text": [
|
535 |
-
"
|
536 |
"\n"
|
537 |
]
|
538 |
}
|
@@ -540,8 +488,8 @@
|
|
540 |
"source": [
|
541 |
"from langchain.chains import RetrievalQA\n",
|
542 |
"\n",
|
543 |
-
"query = \"How many parameters
|
544 |
-
"retriever = chroma_db.as_retriever(search_kwargs={\"k\":
|
545 |
"# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
|
546 |
"# and using a LLM to formulate the final answer.\n",
|
547 |
"chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
|
@@ -552,12 +500,12 @@
|
|
552 |
},
|
553 |
{
|
554 |
"cell_type": "code",
|
555 |
-
"
|
556 |
"metadata": {
|
557 |
"id": "AKr16L_kwyYX"
|
558 |
},
|
559 |
-
"
|
560 |
-
"
|
561 |
}
|
562 |
],
|
563 |
"metadata": {
|
@@ -583,7 +531,7 @@
|
|
583 |
},
|
584 |
"widgets": {
|
585 |
"application/vnd.jupyter.widget-state+json": {
|
586 |
-
"
|
587 |
"model_module": "@jupyter-widgets/controls",
|
588 |
"model_name": "HBoxModel",
|
589 |
"model_module_version": "1.5.0",
|
@@ -598,14 +546,14 @@
|
|
598 |
"_view_name": "HBoxView",
|
599 |
"box_style": "",
|
600 |
"children": [
|
601 |
-
"
|
602 |
-
"
|
603 |
-
"
|
604 |
],
|
605 |
-
"layout": "
|
606 |
}
|
607 |
},
|
608 |
-
"
|
609 |
"model_module": "@jupyter-widgets/controls",
|
610 |
"model_name": "HTMLModel",
|
611 |
"model_module_version": "1.5.0",
|
@@ -620,13 +568,13 @@
|
|
620 |
"_view_name": "HTMLView",
|
621 |
"description": "",
|
622 |
"description_tooltip": null,
|
623 |
-
"layout": "
|
624 |
"placeholder": "β",
|
625 |
-
"style": "
|
626 |
"value": "Parsingβnodes:β100%"
|
627 |
}
|
628 |
},
|
629 |
-
"
|
630 |
"model_module": "@jupyter-widgets/controls",
|
631 |
"model_name": "FloatProgressModel",
|
632 |
"model_module_version": "1.5.0",
|
@@ -642,15 +590,15 @@
|
|
642 |
"bar_style": "success",
|
643 |
"description": "",
|
644 |
"description_tooltip": null,
|
645 |
-
"layout": "
|
646 |
"max": 335,
|
647 |
"min": 0,
|
648 |
"orientation": "horizontal",
|
649 |
-
"style": "
|
650 |
"value": 335
|
651 |
}
|
652 |
},
|
653 |
-
"
|
654 |
"model_module": "@jupyter-widgets/controls",
|
655 |
"model_name": "HTMLModel",
|
656 |
"model_module_version": "1.5.0",
|
@@ -665,13 +613,13 @@
|
|
665 |
"_view_name": "HTMLView",
|
666 |
"description": "",
|
667 |
"description_tooltip": null,
|
668 |
-
"layout": "
|
669 |
"placeholder": "β",
|
670 |
-
"style": "
|
671 |
-
"value": "β335/335β[00:00<00:00,β
|
672 |
}
|
673 |
},
|
674 |
-
"
|
675 |
"model_module": "@jupyter-widgets/base",
|
676 |
"model_name": "LayoutModel",
|
677 |
"model_module_version": "1.2.0",
|
@@ -723,7 +671,7 @@
|
|
723 |
"width": null
|
724 |
}
|
725 |
},
|
726 |
-
"
|
727 |
"model_module": "@jupyter-widgets/base",
|
728 |
"model_name": "LayoutModel",
|
729 |
"model_module_version": "1.2.0",
|
@@ -775,7 +723,7 @@
|
|
775 |
"width": null
|
776 |
}
|
777 |
},
|
778 |
-
"
|
779 |
"model_module": "@jupyter-widgets/controls",
|
780 |
"model_name": "DescriptionStyleModel",
|
781 |
"model_module_version": "1.5.0",
|
@@ -790,7 +738,7 @@
|
|
790 |
"description_width": ""
|
791 |
}
|
792 |
},
|
793 |
-
"
|
794 |
"model_module": "@jupyter-widgets/base",
|
795 |
"model_name": "LayoutModel",
|
796 |
"model_module_version": "1.2.0",
|
@@ -842,7 +790,7 @@
|
|
842 |
"width": null
|
843 |
}
|
844 |
},
|
845 |
-
"
|
846 |
"model_module": "@jupyter-widgets/controls",
|
847 |
"model_name": "ProgressStyleModel",
|
848 |
"model_module_version": "1.5.0",
|
@@ -858,7 +806,7 @@
|
|
858 |
"description_width": ""
|
859 |
}
|
860 |
},
|
861 |
-
"
|
862 |
"model_module": "@jupyter-widgets/base",
|
863 |
"model_name": "LayoutModel",
|
864 |
"model_module_version": "1.2.0",
|
@@ -910,7 +858,7 @@
|
|
910 |
"width": null
|
911 |
}
|
912 |
},
|
913 |
-
"
|
914 |
"model_module": "@jupyter-widgets/controls",
|
915 |
"model_name": "DescriptionStyleModel",
|
916 |
"model_module_version": "1.5.0",
|
@@ -925,7 +873,7 @@
|
|
925 |
"description_width": ""
|
926 |
}
|
927 |
},
|
928 |
-
"
|
929 |
"model_module": "@jupyter-widgets/controls",
|
930 |
"model_name": "HBoxModel",
|
931 |
"model_module_version": "1.5.0",
|
@@ -940,14 +888,14 @@
|
|
940 |
"_view_name": "HBoxView",
|
941 |
"box_style": "",
|
942 |
"children": [
|
943 |
-
"
|
944 |
-
"
|
945 |
-
"
|
946 |
],
|
947 |
-
"layout": "
|
948 |
}
|
949 |
},
|
950 |
-
"
|
951 |
"model_module": "@jupyter-widgets/controls",
|
952 |
"model_name": "HTMLModel",
|
953 |
"model_module_version": "1.5.0",
|
@@ -962,13 +910,13 @@
|
|
962 |
"_view_name": "HTMLView",
|
963 |
"description": "",
|
964 |
"description_tooltip": null,
|
965 |
-
"layout": "
|
966 |
"placeholder": "β",
|
967 |
-
"style": "
|
968 |
"value": "Generatingβembeddings:β100%"
|
969 |
}
|
970 |
},
|
971 |
-
"
|
972 |
"model_module": "@jupyter-widgets/controls",
|
973 |
"model_name": "FloatProgressModel",
|
974 |
"model_module_version": "1.5.0",
|
@@ -984,15 +932,15 @@
|
|
984 |
"bar_style": "success",
|
985 |
"description": "",
|
986 |
"description_tooltip": null,
|
987 |
-
"layout": "
|
988 |
"max": 335,
|
989 |
"min": 0,
|
990 |
"orientation": "horizontal",
|
991 |
-
"style": "
|
992 |
"value": 335
|
993 |
}
|
994 |
},
|
995 |
-
"
|
996 |
"model_module": "@jupyter-widgets/controls",
|
997 |
"model_name": "HTMLModel",
|
998 |
"model_module_version": "1.5.0",
|
@@ -1007,13 +955,13 @@
|
|
1007 |
"_view_name": "HTMLView",
|
1008 |
"description": "",
|
1009 |
"description_tooltip": null,
|
1010 |
-
"layout": "
|
1011 |
"placeholder": "β",
|
1012 |
-
"style": "
|
1013 |
-
"value": "β335/335β[00:
|
1014 |
}
|
1015 |
},
|
1016 |
-
"
|
1017 |
"model_module": "@jupyter-widgets/base",
|
1018 |
"model_name": "LayoutModel",
|
1019 |
"model_module_version": "1.2.0",
|
@@ -1065,7 +1013,7 @@
|
|
1065 |
"width": null
|
1066 |
}
|
1067 |
},
|
1068 |
-
"
|
1069 |
"model_module": "@jupyter-widgets/base",
|
1070 |
"model_name": "LayoutModel",
|
1071 |
"model_module_version": "1.2.0",
|
@@ -1117,7 +1065,7 @@
|
|
1117 |
"width": null
|
1118 |
}
|
1119 |
},
|
1120 |
-
"
|
1121 |
"model_module": "@jupyter-widgets/controls",
|
1122 |
"model_name": "DescriptionStyleModel",
|
1123 |
"model_module_version": "1.5.0",
|
@@ -1132,7 +1080,7 @@
|
|
1132 |
"description_width": ""
|
1133 |
}
|
1134 |
},
|
1135 |
-
"
|
1136 |
"model_module": "@jupyter-widgets/base",
|
1137 |
"model_name": "LayoutModel",
|
1138 |
"model_module_version": "1.2.0",
|
@@ -1184,7 +1132,7 @@
|
|
1184 |
"width": null
|
1185 |
}
|
1186 |
},
|
1187 |
-
"
|
1188 |
"model_module": "@jupyter-widgets/controls",
|
1189 |
"model_name": "ProgressStyleModel",
|
1190 |
"model_module_version": "1.5.0",
|
@@ -1200,7 +1148,7 @@
|
|
1200 |
"description_width": ""
|
1201 |
}
|
1202 |
},
|
1203 |
-
"
|
1204 |
"model_module": "@jupyter-widgets/base",
|
1205 |
"model_name": "LayoutModel",
|
1206 |
"model_module_version": "1.2.0",
|
@@ -1252,7 +1200,7 @@
|
|
1252 |
"width": null
|
1253 |
}
|
1254 |
},
|
1255 |
-
"
|
1256 |
"model_module": "@jupyter-widgets/controls",
|
1257 |
"model_name": "DescriptionStyleModel",
|
1258 |
"model_module_version": "1.5.0",
|
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 3,
|
25 |
"metadata": {
|
|
|
26 |
"collapsed": true,
|
27 |
+
"id": "QPJzr-I9XQ7l"
|
|
|
|
|
|
|
28 |
},
|
29 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"source": [
|
31 |
"!pip install -q llama-index==0.10.57 llama-index-vector-stores-chroma llama-index-llms-gemini==0.1.11 langchain_google_genai google-generativeai==0.5.4 langchain==0.1.17 langchain-chroma langchain_openai==0.1.5 openai==1.37.0 chromadb"
|
32 |
]
|
33 |
},
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
+
"execution_count": 15,
|
37 |
"metadata": {
|
38 |
"id": "riuXwpSPcvWC"
|
39 |
},
|
|
|
41 |
"source": [
|
42 |
"import os\n",
|
43 |
"# Set the following API Keys in the Python environment. Will be used later.\n",
|
44 |
+
"# os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
|
45 |
+
"# os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
|
46 |
+
"\n",
|
47 |
+
"from google.colab import userdata\n",
|
48 |
+
"os.environ[\"OPENAI_API_KEY\"] = userdata.get('openai_api_key')\n",
|
49 |
+
"os.environ[\"GOOGLE_API_KEY\"] = userdata.get('Google_api_key')"
|
50 |
]
|
51 |
},
|
52 |
{
|
|
|
78 |
},
|
79 |
{
|
80 |
"cell_type": "code",
|
81 |
+
"execution_count": 5,
|
82 |
"metadata": {
|
83 |
"colab": {
|
84 |
"base_uri": "https://localhost:8080/"
|
85 |
},
|
86 |
"id": "-QTUkdfJjY4N",
|
87 |
+
"outputId": "34becd46-808a-42ee-e620-3e6b18f79e1d"
|
88 |
},
|
89 |
"outputs": [
|
90 |
{
|
|
|
93 |
"text": [
|
94 |
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
|
95 |
" Dload Upload Total Spent Left Speed\n",
|
96 |
+
"100 169k 100 169k 0 0 609k 0 --:--:-- --:--:-- --:--:-- 612k\n"
|
97 |
]
|
98 |
}
|
99 |
],
|
|
|
112 |
},
|
113 |
{
|
114 |
"cell_type": "code",
|
115 |
+
"execution_count": 6,
|
116 |
"metadata": {
|
117 |
"colab": {
|
118 |
"base_uri": "https://localhost:8080/"
|
119 |
},
|
120 |
"id": "7CYwRT6R0o0I",
|
121 |
+
"outputId": "394603bd-6d33-40aa-8e06-6ef802879234"
|
122 |
},
|
123 |
"outputs": [
|
124 |
{
|
|
|
158 |
},
|
159 |
{
|
160 |
"cell_type": "code",
|
161 |
+
"execution_count": 7,
|
162 |
"metadata": {
|
163 |
"colab": {
|
164 |
"base_uri": "https://localhost:8080/"
|
165 |
},
|
166 |
"id": "STACTMUR1z9N",
|
167 |
+
"outputId": "d5360ce2-2c1e-459b-a3b3-e9899fe762b5"
|
168 |
},
|
169 |
"outputs": [
|
170 |
{
|
|
|
197 |
},
|
198 |
{
|
199 |
"cell_type": "code",
|
200 |
+
"execution_count": 8,
|
201 |
"metadata": {
|
202 |
"id": "CtdsIUQ81_hT"
|
203 |
},
|
|
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
+
"execution_count": 9,
|
224 |
"metadata": {
|
225 |
"id": "mXi56KTXk2sp"
|
226 |
},
|
|
|
236 |
},
|
237 |
{
|
238 |
"cell_type": "code",
|
239 |
+
"execution_count": 10,
|
240 |
"metadata": {
|
241 |
"id": "jKXURvLtkuTS"
|
242 |
},
|
|
|
252 |
},
|
253 |
{
|
254 |
"cell_type": "code",
|
255 |
+
"execution_count": 16,
|
256 |
"metadata": {
|
|
|
|
|
257 |
"colab": {
|
258 |
"base_uri": "https://localhost:8080/",
|
259 |
"height": 81,
|
260 |
"referenced_widgets": [
|
261 |
+
"1a0185d42be8489c87874049e5d78424",
|
262 |
+
"e91d7972a14b4444808d649d5db15b7a",
|
263 |
+
"bd3eab2dfee94512b88d88fbd4cb3682",
|
264 |
+
"3ba2fa0f0c8449c3a22ff3593d2b6629",
|
265 |
+
"eb7ce1338f6a4c9a8fb9a92e8de78821",
|
266 |
+
"d9daeb567dcc4387a7ba406a559aa422",
|
267 |
+
"2a99f51fa5c24ce09f629d9d5322879d",
|
268 |
+
"edfd151ed26646d8a6d293a3cf1ecce6",
|
269 |
+
"032b979544624bd4a9f7eb91fa9dd2e8",
|
270 |
+
"28d35749a3fa4c6f80f626221f95cde1",
|
271 |
+
"3d78bf2951e04c21bd89c1d944412e5a",
|
272 |
+
"a0991085ef794c8cbf509370b67df911",
|
273 |
+
"780fa2ff5938403cb2c109c491368dce",
|
274 |
+
"f833fd603aa543f59a7e93fe980935cc",
|
275 |
+
"48e949bbaf7c4079bbe8fcf620066b8e",
|
276 |
+
"78fd41df7f604f0290dc034c9f01a18c",
|
277 |
+
"d2df0b3067574d46b951890b996a5751",
|
278 |
+
"b51937856bf64803a85ea7eb30f73cfe",
|
279 |
+
"74fe3cd416994417a2138d8a32beeed8",
|
280 |
+
"80626b461cce49e7bcb6e3e931c5d81c",
|
281 |
+
"23f0bdb422384eaf94a69d20502fdbe4",
|
282 |
+
"dfa74d96a1174e7ead6554b5c984f526"
|
283 |
]
|
284 |
+
},
|
285 |
+
"id": "WsD52wtrlESi",
|
286 |
+
"outputId": "2d522a85-cdea-477b-a693-e26b404c8ed9"
|
287 |
},
|
288 |
"outputs": [
|
289 |
{
|
|
|
295 |
"application/vnd.jupyter.widget-view+json": {
|
296 |
"version_major": 2,
|
297 |
"version_minor": 0,
|
298 |
+
"model_id": "1a0185d42be8489c87874049e5d78424"
|
299 |
}
|
300 |
},
|
301 |
"metadata": {}
|
|
|
309 |
"application/vnd.jupyter.widget-view+json": {
|
310 |
"version_major": 2,
|
311 |
"version_minor": 0,
|
312 |
+
"model_id": "a0991085ef794c8cbf509370b67df911"
|
313 |
}
|
314 |
},
|
315 |
"metadata": {}
|
|
|
340 |
},
|
341 |
{
|
342 |
"cell_type": "code",
|
343 |
+
"execution_count": 17,
|
344 |
"metadata": {
|
345 |
"id": "mzS13x1ZlZ5X"
|
346 |
},
|
|
|
358 |
},
|
359 |
{
|
360 |
"cell_type": "code",
|
361 |
+
"execution_count": 18,
|
362 |
"metadata": {
|
363 |
+
"id": "AYsQ4uLN_Oxg",
|
364 |
"colab": {
|
365 |
"base_uri": "https://localhost:8080/",
|
366 |
"height": 52
|
367 |
},
|
368 |
+
"outputId": "f56876cc-f7bc-4e63-bb7b-9515e9b404cc"
|
|
|
369 |
},
|
370 |
"outputs": [
|
371 |
{
|
|
|
393 |
},
|
394 |
{
|
395 |
"cell_type": "code",
|
396 |
+
"execution_count": 19,
|
397 |
"metadata": {
|
398 |
"id": "SMPAniL2e4NP"
|
399 |
},
|
|
|
416 |
},
|
417 |
{
|
418 |
"cell_type": "code",
|
419 |
+
"execution_count": 20,
|
420 |
"metadata": {
|
421 |
"id": "2xas7HkuhJ8A"
|
422 |
},
|
|
|
447 |
},
|
448 |
{
|
449 |
"cell_type": "code",
|
450 |
+
"execution_count": 21,
|
451 |
"metadata": {
|
452 |
"id": "-H64YLxshM2b"
|
453 |
},
|
|
|
467 |
},
|
468 |
{
|
469 |
"cell_type": "code",
|
470 |
+
"execution_count": 25,
|
471 |
"metadata": {
|
472 |
+
"id": "AxBqPNtthPaa",
|
473 |
"colab": {
|
474 |
"base_uri": "https://localhost:8080/"
|
475 |
},
|
476 |
+
"outputId": "607b082a-66c2-49a2-ca59-b3cb85bf6067"
|
|
|
477 |
},
|
478 |
"outputs": [
|
479 |
{
|
480 |
"output_type": "stream",
|
481 |
"name": "stdout",
|
482 |
"text": [
|
483 |
+
"The LLaMA 2 model comes in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
|
484 |
"\n"
|
485 |
]
|
486 |
}
|
|
|
488 |
"source": [
|
489 |
"from langchain.chains import RetrievalQA\n",
|
490 |
"\n",
|
491 |
+
"query = \"How many parameters LLaMA 2 model has?\"\n",
|
492 |
+
"retriever = chroma_db.as_retriever(search_kwargs={\"k\": 4})\n",
|
493 |
"# Define a RetrievalQA chain that is responsible for retrieving related pieces of text,\n",
|
494 |
"# and using a LLM to formulate the final answer.\n",
|
495 |
"chain = RetrievalQA.from_chain_type(llm=llm, chain_type=\"stuff\", retriever=retriever)\n",
|
|
|
500 |
},
|
501 |
{
|
502 |
"cell_type": "code",
|
503 |
+
"execution_count": null,
|
504 |
"metadata": {
|
505 |
"id": "AKr16L_kwyYX"
|
506 |
},
|
507 |
+
"outputs": [],
|
508 |
+
"source": []
|
509 |
}
|
510 |
],
|
511 |
"metadata": {
|
|
|
531 |
},
|
532 |
"widgets": {
|
533 |
"application/vnd.jupyter.widget-state+json": {
|
534 |
+
"1a0185d42be8489c87874049e5d78424": {
|
535 |
"model_module": "@jupyter-widgets/controls",
|
536 |
"model_name": "HBoxModel",
|
537 |
"model_module_version": "1.5.0",
|
|
|
546 |
"_view_name": "HBoxView",
|
547 |
"box_style": "",
|
548 |
"children": [
|
549 |
+
"IPY_MODEL_e91d7972a14b4444808d649d5db15b7a",
|
550 |
+
"IPY_MODEL_bd3eab2dfee94512b88d88fbd4cb3682",
|
551 |
+
"IPY_MODEL_3ba2fa0f0c8449c3a22ff3593d2b6629"
|
552 |
],
|
553 |
+
"layout": "IPY_MODEL_eb7ce1338f6a4c9a8fb9a92e8de78821"
|
554 |
}
|
555 |
},
|
556 |
+
"e91d7972a14b4444808d649d5db15b7a": {
|
557 |
"model_module": "@jupyter-widgets/controls",
|
558 |
"model_name": "HTMLModel",
|
559 |
"model_module_version": "1.5.0",
|
|
|
568 |
"_view_name": "HTMLView",
|
569 |
"description": "",
|
570 |
"description_tooltip": null,
|
571 |
+
"layout": "IPY_MODEL_d9daeb567dcc4387a7ba406a559aa422",
|
572 |
"placeholder": "β",
|
573 |
+
"style": "IPY_MODEL_2a99f51fa5c24ce09f629d9d5322879d",
|
574 |
"value": "Parsingβnodes:β100%"
|
575 |
}
|
576 |
},
|
577 |
+
"bd3eab2dfee94512b88d88fbd4cb3682": {
|
578 |
"model_module": "@jupyter-widgets/controls",
|
579 |
"model_name": "FloatProgressModel",
|
580 |
"model_module_version": "1.5.0",
|
|
|
590 |
"bar_style": "success",
|
591 |
"description": "",
|
592 |
"description_tooltip": null,
|
593 |
+
"layout": "IPY_MODEL_edfd151ed26646d8a6d293a3cf1ecce6",
|
594 |
"max": 335,
|
595 |
"min": 0,
|
596 |
"orientation": "horizontal",
|
597 |
+
"style": "IPY_MODEL_032b979544624bd4a9f7eb91fa9dd2e8",
|
598 |
"value": 335
|
599 |
}
|
600 |
},
|
601 |
+
"3ba2fa0f0c8449c3a22ff3593d2b6629": {
|
602 |
"model_module": "@jupyter-widgets/controls",
|
603 |
"model_name": "HTMLModel",
|
604 |
"model_module_version": "1.5.0",
|
|
|
613 |
"_view_name": "HTMLView",
|
614 |
"description": "",
|
615 |
"description_tooltip": null,
|
616 |
+
"layout": "IPY_MODEL_28d35749a3fa4c6f80f626221f95cde1",
|
617 |
"placeholder": "β",
|
618 |
+
"style": "IPY_MODEL_3d78bf2951e04c21bd89c1d944412e5a",
|
619 |
+
"value": "β335/335β[00:00<00:00,β3304.59it/s]"
|
620 |
}
|
621 |
},
|
622 |
+
"eb7ce1338f6a4c9a8fb9a92e8de78821": {
|
623 |
"model_module": "@jupyter-widgets/base",
|
624 |
"model_name": "LayoutModel",
|
625 |
"model_module_version": "1.2.0",
|
|
|
671 |
"width": null
|
672 |
}
|
673 |
},
|
674 |
+
"d9daeb567dcc4387a7ba406a559aa422": {
|
675 |
"model_module": "@jupyter-widgets/base",
|
676 |
"model_name": "LayoutModel",
|
677 |
"model_module_version": "1.2.0",
|
|
|
723 |
"width": null
|
724 |
}
|
725 |
},
|
726 |
+
"2a99f51fa5c24ce09f629d9d5322879d": {
|
727 |
"model_module": "@jupyter-widgets/controls",
|
728 |
"model_name": "DescriptionStyleModel",
|
729 |
"model_module_version": "1.5.0",
|
|
|
738 |
"description_width": ""
|
739 |
}
|
740 |
},
|
741 |
+
"edfd151ed26646d8a6d293a3cf1ecce6": {
|
742 |
"model_module": "@jupyter-widgets/base",
|
743 |
"model_name": "LayoutModel",
|
744 |
"model_module_version": "1.2.0",
|
|
|
790 |
"width": null
|
791 |
}
|
792 |
},
|
793 |
+
"032b979544624bd4a9f7eb91fa9dd2e8": {
|
794 |
"model_module": "@jupyter-widgets/controls",
|
795 |
"model_name": "ProgressStyleModel",
|
796 |
"model_module_version": "1.5.0",
|
|
|
806 |
"description_width": ""
|
807 |
}
|
808 |
},
|
809 |
+
"28d35749a3fa4c6f80f626221f95cde1": {
|
810 |
"model_module": "@jupyter-widgets/base",
|
811 |
"model_name": "LayoutModel",
|
812 |
"model_module_version": "1.2.0",
|
|
|
858 |
"width": null
|
859 |
}
|
860 |
},
|
861 |
+
"3d78bf2951e04c21bd89c1d944412e5a": {
|
862 |
"model_module": "@jupyter-widgets/controls",
|
863 |
"model_name": "DescriptionStyleModel",
|
864 |
"model_module_version": "1.5.0",
|
|
|
873 |
"description_width": ""
|
874 |
}
|
875 |
},
|
876 |
+
"a0991085ef794c8cbf509370b67df911": {
|
877 |
"model_module": "@jupyter-widgets/controls",
|
878 |
"model_name": "HBoxModel",
|
879 |
"model_module_version": "1.5.0",
|
|
|
888 |
"_view_name": "HBoxView",
|
889 |
"box_style": "",
|
890 |
"children": [
|
891 |
+
"IPY_MODEL_780fa2ff5938403cb2c109c491368dce",
|
892 |
+
"IPY_MODEL_f833fd603aa543f59a7e93fe980935cc",
|
893 |
+
"IPY_MODEL_48e949bbaf7c4079bbe8fcf620066b8e"
|
894 |
],
|
895 |
+
"layout": "IPY_MODEL_78fd41df7f604f0290dc034c9f01a18c"
|
896 |
}
|
897 |
},
|
898 |
+
"780fa2ff5938403cb2c109c491368dce": {
|
899 |
"model_module": "@jupyter-widgets/controls",
|
900 |
"model_name": "HTMLModel",
|
901 |
"model_module_version": "1.5.0",
|
|
|
910 |
"_view_name": "HTMLView",
|
911 |
"description": "",
|
912 |
"description_tooltip": null,
|
913 |
+
"layout": "IPY_MODEL_d2df0b3067574d46b951890b996a5751",
|
914 |
"placeholder": "β",
|
915 |
+
"style": "IPY_MODEL_b51937856bf64803a85ea7eb30f73cfe",
|
916 |
"value": "Generatingβembeddings:β100%"
|
917 |
}
|
918 |
},
|
919 |
+
"f833fd603aa543f59a7e93fe980935cc": {
|
920 |
"model_module": "@jupyter-widgets/controls",
|
921 |
"model_name": "FloatProgressModel",
|
922 |
"model_module_version": "1.5.0",
|
|
|
932 |
"bar_style": "success",
|
933 |
"description": "",
|
934 |
"description_tooltip": null,
|
935 |
+
"layout": "IPY_MODEL_74fe3cd416994417a2138d8a32beeed8",
|
936 |
"max": 335,
|
937 |
"min": 0,
|
938 |
"orientation": "horizontal",
|
939 |
+
"style": "IPY_MODEL_80626b461cce49e7bcb6e3e931c5d81c",
|
940 |
"value": 335
|
941 |
}
|
942 |
},
|
943 |
+
"48e949bbaf7c4079bbe8fcf620066b8e": {
|
944 |
"model_module": "@jupyter-widgets/controls",
|
945 |
"model_name": "HTMLModel",
|
946 |
"model_module_version": "1.5.0",
|
|
|
955 |
"_view_name": "HTMLView",
|
956 |
"description": "",
|
957 |
"description_tooltip": null,
|
958 |
+
"layout": "IPY_MODEL_23f0bdb422384eaf94a69d20502fdbe4",
|
959 |
"placeholder": "β",
|
960 |
+
"style": "IPY_MODEL_dfa74d96a1174e7ead6554b5c984f526",
|
961 |
+
"value": "β335/335β[00:03<00:00,β89.38it/s]"
|
962 |
}
|
963 |
},
|
964 |
+
"78fd41df7f604f0290dc034c9f01a18c": {
|
965 |
"model_module": "@jupyter-widgets/base",
|
966 |
"model_name": "LayoutModel",
|
967 |
"model_module_version": "1.2.0",
|
|
|
1013 |
"width": null
|
1014 |
}
|
1015 |
},
|
1016 |
+
"d2df0b3067574d46b951890b996a5751": {
|
1017 |
"model_module": "@jupyter-widgets/base",
|
1018 |
"model_name": "LayoutModel",
|
1019 |
"model_module_version": "1.2.0",
|
|
|
1065 |
"width": null
|
1066 |
}
|
1067 |
},
|
1068 |
+
"b51937856bf64803a85ea7eb30f73cfe": {
|
1069 |
"model_module": "@jupyter-widgets/controls",
|
1070 |
"model_name": "DescriptionStyleModel",
|
1071 |
"model_module_version": "1.5.0",
|
|
|
1080 |
"description_width": ""
|
1081 |
}
|
1082 |
},
|
1083 |
+
"74fe3cd416994417a2138d8a32beeed8": {
|
1084 |
"model_module": "@jupyter-widgets/base",
|
1085 |
"model_name": "LayoutModel",
|
1086 |
"model_module_version": "1.2.0",
|
|
|
1132 |
"width": null
|
1133 |
}
|
1134 |
},
|
1135 |
+
"80626b461cce49e7bcb6e3e931c5d81c": {
|
1136 |
"model_module": "@jupyter-widgets/controls",
|
1137 |
"model_name": "ProgressStyleModel",
|
1138 |
"model_module_version": "1.5.0",
|
|
|
1148 |
"description_width": ""
|
1149 |
}
|
1150 |
},
|
1151 |
+
"23f0bdb422384eaf94a69d20502fdbe4": {
|
1152 |
"model_module": "@jupyter-widgets/base",
|
1153 |
"model_name": "LayoutModel",
|
1154 |
"model_module_version": "1.2.0",
|
|
|
1200 |
"width": null
|
1201 |
}
|
1202 |
},
|
1203 |
+
"dfa74d96a1174e7ead6554b5c984f526": {
|
1204 |
"model_module": "@jupyter-widgets/controls",
|
1205 |
"model_name": "DescriptionStyleModel",
|
1206 |
"model_module_version": "1.5.0",
|