ai-tutor-chatbot / scripts /call_openai.py
Omar Solano
update gpt version
a4ba306
raw
history blame
2.17 kB
import os
import logging
import instructor
import openai
from openai import OpenAI, AsyncOpenAI
from dotenv import load_dotenv
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
load_dotenv(".env")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def api_function_call(
system_message,
query: str,
model: str = "gpt-4o",
response_model=None,
max_retries: int = 0,
stream: bool = False,
):
client = instructor.patch(OpenAI())
try:
message_data = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": query},
],
"max_retries": max_retries,
"stream": stream,
}
if response_model is not None:
message_data["response_model"] = response_model
response = client.chat.completions.create(**message_data)
error = False
except openai.BadRequestError:
error = True
logger.exception("Invalid request to OpenAI API. See traceback:")
error_message = (
"Something went wrong while connecting with OpenAI, try again soon!"
)
return error_message, error
except openai.RateLimitError:
error = True
logger.exception("RateLimit error from OpenAI. See traceback:")
error_message = "OpenAI servers seem to be overloaded, try again later!"
return error_message, error
except Exception as e:
error = True
logger.exception(
"Some kind of error happened trying to generate the response. See traceback:"
)
error_message = (
"Something went wrong with connecting with OpenAI, try again soon!"
)
return error_message, error
if stream is True and response_model is None:
def answer_generator():
for chunk in response:
token = chunk.choices[0].delta.content
token = "" if token is None else token
yield token
return answer_generator(), error
else:
return response, error