Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
·
d472855
1
Parent(s):
be583dc
app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline,
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
import time
|
@@ -29,7 +29,7 @@ def load_model(lora_dir, cn_dir):
|
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
dtype = torch.float16
|
31 |
model = "cagliostrolab/animagine-xl-3.1"
|
32 |
-
scheduler =
|
33 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
34 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
35 |
model,
|
@@ -65,9 +65,9 @@ def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
65 |
strength=1.0,
|
66 |
prompt=prompt,
|
67 |
negative_prompt = negative_prompt,
|
68 |
-
controlnet_conditioning_scale=
|
69 |
generator=generator,
|
70 |
-
num_inference_steps=
|
71 |
eta=1.0,
|
72 |
).images[0]
|
73 |
print(f"Time taken: {time.time() - last_time}")
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, AutoencoderKL
|
5 |
from PIL import Image
|
6 |
import os
|
7 |
import time
|
|
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
dtype = torch.float16
|
31 |
model = "cagliostrolab/animagine-xl-3.1"
|
32 |
+
scheduler = AutoencoderKL.from_pretrained(model, subfolder="scheduler")
|
33 |
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
34 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
35 |
model,
|
|
|
65 |
strength=1.0,
|
66 |
prompt=prompt,
|
67 |
negative_prompt = negative_prompt,
|
68 |
+
controlnet_conditioning_scale=float(controlnet_scale),
|
69 |
generator=generator,
|
70 |
+
num_inference_steps=30,
|
71 |
eta=1.0,
|
72 |
).images[0]
|
73 |
print(f"Time taken: {time.time() - last_time}")
|