Spaces:
Running
on
Zero
Running
on
Zero
tori29umai
commited on
Commit
·
953a099
1
Parent(s):
5826348
app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,28 @@ import time
|
|
9 |
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
|
10 |
from utils.prompt_analysis import PromptAnalysis
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
class Img2Img:
|
13 |
def __init__(self):
|
14 |
self.setup_paths()
|
@@ -24,27 +46,6 @@ class Img2Img:
|
|
24 |
os.makedirs(self.tagger_dir, exist_ok=True)
|
25 |
os.makedirs(self.lora_dir, exist_ok=True)
|
26 |
|
27 |
-
def setup_models(self):
|
28 |
-
load_cn_model(self.cn_dir)
|
29 |
-
load_cn_config(self.cn_dir)
|
30 |
-
load_tagger_model(self.tagger_dir)
|
31 |
-
load_lora_model(self.lora_dir)
|
32 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
-
self.dtype = torch.float16
|
34 |
-
self.model = "cagliostrolab/animagine-xl-3.1"
|
35 |
-
self.scheduler = DDIMScheduler.from_pretrained(self.model, subfolder="scheduler")
|
36 |
-
self.controlnet = ControlNetModel.from_pretrained(self.cn_dir, torch_dtype=self.dtype, use_safetensors=True)
|
37 |
-
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
38 |
-
self.model,
|
39 |
-
controlnet=self.controlnet,
|
40 |
-
torch_dtype=self.dtype,
|
41 |
-
use_safetensors=True,
|
42 |
-
scheduler=self.scheduler,
|
43 |
-
)
|
44 |
-
self.pipe.load_lora_weights(self.lora_dir, weight_name="sdxl_BWLine.safetensors")
|
45 |
-
self.pipe = self.pipe.to(self.device)
|
46 |
-
|
47 |
-
|
48 |
def layout(self):
|
49 |
css = """
|
50 |
#intro{
|
@@ -73,24 +74,22 @@ class Img2Img:
|
|
73 |
|
74 |
@spaces.GPU
|
75 |
def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
|
76 |
input_image_pil = Image.open(input_image_path)
|
77 |
base_size = input_image_pil.size
|
78 |
resize_image = resize_image_aspect_ratio(input_image_pil)
|
79 |
resize_image_size = resize_image.size
|
80 |
width, height = resize_image_size
|
81 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
82 |
-
conditioning, pooled = self.compel([prompt, negative_prompt])
|
83 |
generator = torch.manual_seed(0)
|
84 |
last_time = time.time()
|
85 |
|
86 |
-
output_image =
|
87 |
image=white_base_pil,
|
88 |
control_image=resize_image,
|
89 |
strength=1.0,
|
90 |
-
|
91 |
-
|
92 |
-
negative_prompt_embeds=conditioning[1:2],
|
93 |
-
negative_pooled_prompt_embeds=pooled[1:2],
|
94 |
width=width,
|
95 |
height=height,
|
96 |
controlnet_conditioning_scale=float(controlnet_scale),
|
@@ -100,7 +99,7 @@ class Img2Img:
|
|
100 |
num_inference_steps=30,
|
101 |
guidance_scale=8.5,
|
102 |
eta=1.0,
|
103 |
-
)
|
104 |
print(f"Time taken: {time.time() - last_time}")
|
105 |
output_image = output_image.resize(base_size, Image.LANCZOS)
|
106 |
return output_image
|
|
|
9 |
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
|
10 |
from utils.prompt_analysis import PromptAnalysis
|
11 |
|
12 |
+
|
13 |
+
def load_model():
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
dtype = torch.float16
|
16 |
+
model = "cagliostrolab/animagine-xl-3.1"
|
17 |
+
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
18 |
+
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)
|
19 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
20 |
+
model,
|
21 |
+
controlnet=controlnet,
|
22 |
+
torch_dtype=dtype,
|
23 |
+
use_safetensors=True,
|
24 |
+
scheduler=scheduler,
|
25 |
+
)
|
26 |
+
pipe.load_lora_weights(lora_dir, weight_name="sdxl_BWLine.safetensors")
|
27 |
+
pipe = pipe.to(device)
|
28 |
+
return pipe
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
class Img2Img:
|
35 |
def __init__(self):
|
36 |
self.setup_paths()
|
|
|
46 |
os.makedirs(self.tagger_dir, exist_ok=True)
|
47 |
os.makedirs(self.lora_dir, exist_ok=True)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def layout(self):
|
50 |
css = """
|
51 |
#intro{
|
|
|
74 |
|
75 |
@spaces.GPU
|
76 |
def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
|
77 |
+
pipe = load_model()
|
78 |
input_image_pil = Image.open(input_image_path)
|
79 |
base_size = input_image_pil.size
|
80 |
resize_image = resize_image_aspect_ratio(input_image_pil)
|
81 |
resize_image_size = resize_image.size
|
82 |
width, height = resize_image_size
|
83 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
|
|
84 |
generator = torch.manual_seed(0)
|
85 |
last_time = time.time()
|
86 |
|
87 |
+
output_image = pipe(
|
88 |
image=white_base_pil,
|
89 |
control_image=resize_image,
|
90 |
strength=1.0,
|
91 |
+
prompt=prompt,
|
92 |
+
negative_prompt = negative_prompt,
|
|
|
|
|
93 |
width=width,
|
94 |
height=height,
|
95 |
controlnet_conditioning_scale=float(controlnet_scale),
|
|
|
99 |
num_inference_steps=30,
|
100 |
guidance_scale=8.5,
|
101 |
eta=1.0,
|
102 |
+
).images[0]
|
103 |
print(f"Time taken: {time.time() - last_time}")
|
104 |
output_image = output_image.resize(base_size, Image.LANCZOS)
|
105 |
return output_image
|