asr / README.md
tools4eu's picture
updating HF spaces config
be85aed
|
raw
history blame
2.88 kB
---
title: Automatic speech recognition
sdk: gradio
app_file: src/app.py
python_version: 3.10
sdk_version: 4.21.0
app_port: 7860
tags: [asr, stt, speech-to-text, whisper, pyannote, diarization]
pinned: true
emoji: ✍️
---
# Automatic speech recognition
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
![Python 3.10](badges/python3_10.svg)
![Screenshot](img/screenshot.jpg)
Automatic speech recognition uses [Distil-Whisper: distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) to transcribe audio files and [pyannote-audio](https://github.com/pyannote/pyannote-audio) to add speaker diarization.
It has optimized inference because of batching and Scale-Product-Attention (SDPA) or flash attention (if available).
> :warning: **Always review transcriptions.** Transcriptions are done using AI models which are never 100% accurate.
The repo contains (will contain) code to run the software
- as a command-line tool
- as graphical interface
- as an inference API
## Installation
### Prerequisites
The host machine must have an NVidia graphics card with CUDA 12.x installed natively, preferably [CUDA 12.1](https://developer.nvidia.com/cuda-12-1-0-download-archive), even when using Docker.
The graphics card should have at least 8GB VRAM.
The host machine must have Docker installed.
For a Linux server, follow [these instructions](https://docs.docker.com/engine/install/)
For a desktop (visual UI available), follow [these instructions](https://www.docker.com/products/docker-desktop/)
### Docker (recommended)
Build the Docker image
`docker build -t asr .` (make sure Docker is running on your system)
Run the Docker image, forward port 7860 (Gradio) and pass your GPU(s) to the container
`docker run -p 7860:7860 --gpus all asr`
Or in detached mode (in background)
`docker run -d -p 7860:7860 --gpus all asr`
You can check whether it is running with
`docker ps`
If you want to follow terminal output of a detached container, you can use
`docker logs -f <first n digits of the container id>`
The first time a transcription is requested, it will download the model.
To avoid this happening each time, make sure you stop and start the same container, instead of using
`docker run ...` again
use `docker start <first n digits of container>`
You can find the list of all containers, also stopped ones by using
`docker ps -a`
To open the app, open your **browser** and go to `localhost:7860`
### Dev Container
Open the project Visual Studio Code and use CTRL + SHIFT + P and type "Rebuild and reopen in container".
After building, open up a terminal and activate the virtual environment
`source /home/jovyan/venv/bin/activate`
Then run the app
`python src/app.py`
## License
GNU General Public License v3.0 or later
See [COPYING](COPYING) to see the full text.