Final_Assignment / tests /async_batch_logger.py
GAIA Developer
๐Ÿงช Add comprehensive test infrastructure and async testing system
c262d1a
#!/usr/bin/env python3
"""
Comprehensive Async Batch Logging System for GAIA Questions
Provides detailed per-question logs, batch summary, and classification analysis
"""
import os
import json
import asyncio
import logging
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Any
from collections import defaultdict
from dataclasses import dataclass, asdict
@dataclass
class QuestionResult:
"""Data class for storing question processing results"""
task_id: str
question_text: str
classification: str
complexity: int
confidence: float
expected_answer: str
our_answer: str
status: str # CORRECT, INCORRECT, PARTIAL, ERROR
accuracy_score: float
total_duration: float
classification_time: float
solving_time: float
validation_time: float
error_type: Optional[str] = None
error_details: Optional[str] = None
tools_used: List[str] = None
anti_hallucination_applied: bool = False
override_reason: Optional[str] = None
def __post_init__(self):
if self.tools_used is None:
self.tools_used = []
class AsyncBatchLogger:
"""Comprehensive logging system for async batch processing"""
def __init__(self, base_log_dir: str = "logs"):
self.base_log_dir = Path(base_log_dir)
self.base_log_dir.mkdir(exist_ok=True)
# Initialize timestamps
self.batch_start_time = datetime.now()
self.timestamp = self.batch_start_time.strftime("%Y%m%d_%H%M%S")
# Create log files
self.summary_log_path = self.base_log_dir / f"async_batch_summary_{self.timestamp}.log"
self.batch_analysis_path = self.base_log_dir / f"async_batch_analysis_{self.timestamp}.json"
# Initialize data structures
self.question_results: Dict[str, QuestionResult] = {}
self.classification_results = defaultdict(list)
self.batch_metrics = {
"total_questions": 0,
"completed_questions": 0,
"correct_answers": 0,
"accuracy_rate": 0.0,
"total_duration": 0.0,
"start_time": self.batch_start_time.isoformat(),
"end_time": None
}
# Initialize summary logger
self.summary_logger = self._setup_summary_logger()
# Active question loggers for concurrent access
self.question_loggers: Dict[str, logging.Logger] = {}
def _setup_summary_logger(self) -> logging.Logger:
"""Set up the batch summary logger"""
logger = logging.getLogger(f"batch_summary_{self.timestamp}")
logger.setLevel(logging.INFO)
# Create file handler
handler = logging.FileHandler(self.summary_log_path)
formatter = logging.Formatter('[%(asctime)s] %(message)s', datefmt='%H:%M:%S')
handler.setFormatter(formatter)
logger.addHandler(handler)
# Also log to console
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
def _setup_question_logger(self, task_id: str) -> logging.Logger:
"""Set up detailed logger for a specific question"""
question_log_path = self.base_log_dir / f"async_batch_question_{task_id}_{self.timestamp}.log"
logger = logging.getLogger(f"question_{task_id}_{self.timestamp}")
logger.setLevel(logging.INFO)
# Create file handler
handler = logging.FileHandler(question_log_path)
formatter = logging.Formatter('%(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
async def log_batch_start(self, total_questions: int, concurrency: int):
"""Log the start of batch processing"""
self.batch_metrics["total_questions"] = total_questions
self.summary_logger.info(f"BATCH_START | Total: {total_questions} questions | Concurrency: {concurrency}")
self.summary_logger.info(f"Timestamp: {self.batch_start_time.isoformat()}")
self.summary_logger.info(f"Log Directory: {self.base_log_dir}")
self.summary_logger.info("-" * 80)
async def log_question_start(self, task_id: str, question_data: Dict):
"""Log the start of processing a specific question"""
# Set up question-specific logger
question_logger = self._setup_question_logger(task_id)
self.question_loggers[task_id] = question_logger
# Log detailed question start
question_logger.info("=" * 80)
question_logger.info("ASYNC BATCH QUESTION PROCESSING")
question_logger.info("=" * 80)
question_logger.info(f"Question ID: {task_id}")
question_logger.info(f"Start Time: {datetime.now().isoformat()}")
question_logger.info(f"Question Text: {question_data.get('question', 'N/A')}")
question_logger.info(f"Level: {question_data.get('Level', 'Unknown')}")
question_logger.info(f"Has File: {'Yes' if question_data.get('file_name') else 'No'}")
if question_data.get('file_name'):
question_logger.info(f"File: {question_data.get('file_name')}")
question_logger.info("")
async def log_classification(self, task_id: str, classification: Dict):
"""Log question classification details"""
if task_id not in self.question_loggers:
return
logger = self.question_loggers[task_id]
logger.info("--- CLASSIFICATION PHASE ---")
logger.info(f"Primary Agent: {classification.get('primary_agent', 'unknown')}")
logger.info(f"Secondary Agents: {', '.join(classification.get('secondary_agents', []))}")
logger.info(f"Complexity: {classification.get('complexity', 0)}/5")
logger.info(f"Confidence: {classification.get('confidence', 0.0):.3f}")
logger.info(f"Tools Needed: {', '.join(classification.get('tools_needed', []))}")
logger.info(f"Reasoning: {classification.get('reasoning', 'N/A')}")
logger.info("")
async def log_solving_start(self, task_id: str, routing_plan: Dict):
"""Log the start of the solving phase"""
if task_id not in self.question_loggers:
return
logger = self.question_loggers[task_id]
logger.info("--- SOLVING PHASE ---")
logger.info(f"Route to: {routing_plan.get('primary_route', 'unknown')} agent")
logger.info(f"Coordination: {'Yes' if routing_plan.get('requires_coordination') else 'No'}")
logger.info(f"Estimated Duration: {routing_plan.get('estimated_duration', 'unknown')}")
logger.info("")
logger.info("Tool Executions:")
async def log_tool_execution(self, task_id: str, tool_name: str, duration: float, result_summary: str):
"""Log individual tool execution"""
if task_id not in self.question_loggers:
return
logger = self.question_loggers[task_id]
logger.info(f" - {tool_name}: {duration:.1f}s โ†’ {result_summary[:100]}...")
async def log_answer_processing(self, task_id: str, raw_response: str, processed_answer: str,
anti_hallucination_applied: bool = False, override_reason: str = None):
"""Log answer processing and anti-hallucination details"""
if task_id not in self.question_loggers:
return
logger = self.question_loggers[task_id]
logger.info("")
logger.info("Agent Response (first 500 chars):")
logger.info(raw_response[:500] + ("..." if len(raw_response) > 500 else ""))
logger.info("")
logger.info(f"Processed Answer: {processed_answer}")
if anti_hallucination_applied:
logger.info(f"๐Ÿšจ ANTI-HALLUCINATION OVERRIDE APPLIED")
logger.info(f"Reason: {override_reason}")
logger.info("")
async def log_question_complete(self, task_id: str, result: QuestionResult):
"""Log the completion of a question with full results"""
if task_id not in self.question_loggers:
return
logger = self.question_loggers[task_id]
# Store result
self.question_results[task_id] = result
self.classification_results[result.classification].append(result)
# Update batch metrics
self.batch_metrics["completed_questions"] += 1
if result.status == "CORRECT":
self.batch_metrics["correct_answers"] += 1
# Log validation phase
logger.info("--- VALIDATION PHASE ---")
logger.info(f"Expected Answer: {result.expected_answer}")
logger.info(f"Our Answer: {result.our_answer}")
logger.info(f"Status: {result.status}")
logger.info(f"Accuracy Score: {result.accuracy_score:.1%}")
logger.info("")
# Log performance metrics
logger.info("--- PERFORMANCE METRICS ---")
logger.info(f"Total Duration: {result.total_duration:.1f}s")
logger.info(f"Classification Time: {result.classification_time:.1f}s")
logger.info(f"Solving Time: {result.solving_time:.1f}s")
logger.info(f"Validation Time: {result.validation_time:.1f}s")
if result.error_type:
logger.info(f"Error Type: {result.error_type}")
logger.info(f"Error Details: {result.error_details}")
logger.info("")
logger.info("=" * 80)
logger.info("END QUESTION LOG")
logger.info("=" * 80)
# Log to summary
status_emoji = "โœ…" if result.status == "CORRECT" else "๐ŸŸก" if result.status == "PARTIAL" else "โŒ"
override_info = f" | {result.override_reason}" if result.anti_hallucination_applied else ""
self.summary_logger.info(
f"{status_emoji} {task_id[:8]}... | {result.classification} | {result.status} | "
f"{result.accuracy_score:.0%} | {result.total_duration:.1f}s{override_info}"
)
async def log_batch_progress(self):
"""Log current batch progress with ETA"""
completed = self.batch_metrics["completed_questions"]
total = self.batch_metrics["total_questions"]
if completed == 0:
return
# Calculate accuracy
accuracy = (self.batch_metrics["correct_answers"] / completed) * 100
# Calculate ETA
elapsed_time = (datetime.now() - self.batch_start_time).total_seconds()
avg_time_per_question = elapsed_time / completed
remaining_questions = total - completed
eta_seconds = remaining_questions * avg_time_per_question
eta_minutes = int(eta_seconds // 60)
eta_seconds = int(eta_seconds % 60)
self.summary_logger.info(
f"๐Ÿ“Š PROGRESS | {completed}/{total} completed | {accuracy:.1f}% accuracy | "
f"ETA: {eta_minutes}m {eta_seconds}s"
)
async def log_batch_complete(self):
"""Log batch completion with final summary"""
end_time = datetime.now()
total_duration = (end_time - self.batch_start_time).total_seconds()
# Update batch metrics
self.batch_metrics["end_time"] = end_time.isoformat()
self.batch_metrics["total_duration"] = total_duration
completed = self.batch_metrics["completed_questions"]
total = self.batch_metrics["total_questions"]
accuracy = (self.batch_metrics["correct_answers"] / completed * 100) if completed > 0 else 0
self.batch_metrics["accuracy_rate"] = accuracy / 100
self.summary_logger.info("-" * 80)
self.summary_logger.info(
f"๐Ÿ BATCH_COMPLETE | {completed}/{total} | {accuracy:.1f}% accuracy | "
f"Total: {int(total_duration//60)}m {int(total_duration%60)}s"
)
# Generate classification analysis
await self.generate_classification_analysis()
# Export final results
await self.export_results()
self.summary_logger.info(f"๐Ÿ“Š Analysis exported: {self.batch_analysis_path}")
self.summary_logger.info(f"๐Ÿ“‹ Summary log: {self.summary_log_path}")
async def generate_classification_analysis(self):
"""Generate detailed analysis by classification"""
analysis = {
"batch_metadata": self.batch_metrics,
"classification_breakdown": {},
"overall_recommendations": []
}
for classification, results in self.classification_results.items():
if not results:
continue
# Calculate metrics
total = len(results)
correct = len([r for r in results if r.status == "CORRECT"])
partial = len([r for r in results if r.status == "PARTIAL"])
errors = len([r for r in results if r.status == "ERROR"])
accuracy_rate = correct / total if total > 0 else 0
avg_duration = sum(r.total_duration for r in results) / total if total > 0 else 0
# Error analysis
error_types = defaultdict(int)
failed_questions = []
for result in results:
if result.status in ["INCORRECT", "ERROR"]:
error_types[result.error_type or "unknown"] += 1
failed_questions.append({
"task_id": result.task_id,
"error_type": result.error_type,
"error_details": result.error_details
})
# Generate recommendations
recommendations = self._generate_recommendations(classification, results, error_types)
classification_analysis = {
"classification": classification,
"total_questions": total,
"accuracy_rate": accuracy_rate,
"successful": correct,
"partial": partial,
"failed": total - correct - partial,
"errors": errors,
"performance_metrics": {
"avg_duration": avg_duration,
"min_duration": min(r.total_duration for r in results) if results else 0,
"max_duration": max(r.total_duration for r in results) if results else 0
},
"error_breakdown": dict(error_types),
"failed_questions": failed_questions,
"improvement_recommendations": recommendations
}
analysis["classification_breakdown"][classification] = classification_analysis
# Generate overall recommendations
analysis["overall_recommendations"] = self._generate_overall_recommendations()
# Save classification analysis
with open(self.batch_analysis_path, 'w') as f:
json.dump(analysis, f, indent=2, ensure_ascii=False)
def _generate_recommendations(self, classification: str, results: List[QuestionResult],
error_types: Dict[str, int]) -> List[str]:
"""Generate specific recommendations for a classification"""
recommendations = []
accuracy_rate = len([r for r in results if r.status == "CORRECT"]) / len(results)
if accuracy_rate < 0.8:
recommendations.append(f"๐Ÿ”ง Low accuracy ({accuracy_rate:.1%}) - needs immediate attention")
# Classification-specific recommendations
if classification == "multimedia":
if "timeout" in error_types:
recommendations.append("โฑ๏ธ Optimize video processing timeout limits")
if "audio_processing" in error_types:
recommendations.append("๐ŸŽต Enhance audio transcription accuracy")
if accuracy_rate > 0.9:
recommendations.append("โœ… Excellent multimedia processing - ready for production")
elif classification == "research":
if "hallucination" in error_types:
recommendations.append("๐Ÿšจ Strengthen anti-hallucination safeguards")
if "wikipedia" in error_types:
recommendations.append("๐Ÿ“š Improve Wikipedia tool integration")
if accuracy_rate > 0.9:
recommendations.append("โœ… Excellent research capabilities - ready for production")
elif classification == "logic_math":
if "chess" in error_types:
recommendations.append("โ™Ÿ๏ธ Enhance chess analysis algorithms")
if "calculation" in error_types:
recommendations.append("๐Ÿงฎ Improve mathematical calculation accuracy")
if accuracy_rate > 0.9:
recommendations.append("โœ… Excellent logic/math processing - ready for production")
elif classification == "file_processing":
if "python_execution" in error_types:
recommendations.append("๐Ÿ Optimize Python code execution environment")
if "excel_processing" in error_types:
recommendations.append("๐Ÿ“Š Enhance Excel file processing capabilities")
if accuracy_rate > 0.9:
recommendations.append("โœ… Excellent file processing - ready for production")
# Performance recommendations
avg_duration = sum(r.total_duration for r in results) / len(results)
if avg_duration > 60:
recommendations.append(f"โšก Optimize performance - avg duration {avg_duration:.1f}s")
return recommendations
def _generate_overall_recommendations(self) -> List[str]:
"""Generate overall system recommendations"""
recommendations = []
total_accuracy = self.batch_metrics["accuracy_rate"]
if total_accuracy >= 0.95:
recommendations.append("๐Ÿ† EXCELLENT: 95%+ accuracy achieved - production ready!")
elif total_accuracy >= 0.90:
recommendations.append("โœ… GREAT: 90%+ accuracy - minor optimizations needed")
elif total_accuracy >= 0.80:
recommendations.append("๐Ÿ”ง GOOD: 80%+ accuracy - moderate improvements needed")
elif total_accuracy >= 0.70:
recommendations.append("โš ๏ธ ACCEPTABLE: 70%+ accuracy - significant improvements needed")
else:
recommendations.append("๐Ÿšจ CRITICAL: <70% accuracy - major system overhaul required")
# Add specific system recommendations
recommendations.extend([
"๐Ÿ“Š Monitor performance metrics for production deployment",
"๐Ÿ”„ Implement continuous improvement based on classification analysis",
"๐Ÿ“ˆ Track accuracy trends over time",
"๐Ÿ› ๏ธ Focus improvement efforts on lowest-performing classifications"
])
return recommendations
async def export_results(self):
"""Export comprehensive results for analysis"""
# Export individual question results
results_data = {
"batch_metadata": self.batch_metrics,
"question_results": [asdict(result) for result in self.question_results.values()],
"classification_summary": {
classification: {
"count": len(results),
"accuracy": len([r for r in results if r.status == "CORRECT"]) / len(results)
}
for classification, results in self.classification_results.items()
}
}
results_file = self.base_log_dir / f"async_batch_results_{self.timestamp}.json"
with open(results_file, 'w') as f:
json.dump(results_data, f, indent=2, ensure_ascii=False)
self.summary_logger.info(f"๐Ÿ“ Detailed results: {results_file}")