Final_Assignment / app /gaia_evaluator.py
GAIA Developer
๐Ÿš€ feat: Add comprehensive GAIA evaluation system and batch testing infrastructure
1a3088a
#!/usr/bin/env python3
"""
GAIA Evaluator
A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions.
"""
import json
import logging
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import statistics
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from answer_validator import AnswerValidator
class GAIAEvaluator:
"""
A comprehensive evaluation system for GAIA benchmark performance analysis.
Provides detailed metrics, visualizations, and comparative analysis.
"""
def __init__(self,
results_dir: Optional[str] = None,
validation_file: Optional[str] = "gaia_validation_metadata.jsonl"):
"""
Initialize the GAIA evaluator.
Args:
results_dir: Directory containing test results (None to provide later)
validation_file: Path to validation metadata file
"""
self.logger = logging.getLogger("GAIAEvaluator")
self.results_dir = Path(results_dir) if results_dir else None
self.validation_file = Path(validation_file) if validation_file else None
self.validator = AnswerValidator()
# Performance metrics
self.metrics = {}
self.question_details = {}
self.validation_data = {}
# Load validation data if provided
if self.validation_file and self.validation_file.exists():
self._load_validation_data()
def _load_validation_data(self) -> None:
"""Load validation data from JSONL file."""
self.logger.info(f"Loading validation data from {self.validation_file}")
try:
with open(self.validation_file, 'r') as f:
for line in f:
try:
entry = json.loads(line)
question_id = entry.get('question_id')
if question_id:
self.validation_data[question_id] = entry
except json.JSONDecodeError:
self.logger.warning(f"Could not parse line in validation file: {line[:50]}...")
except Exception as e:
self.logger.error(f"Error loading validation data: {e}")
def set_results_directory(self, results_dir: str) -> None:
"""Set or update the results directory."""
self.results_dir = Path(results_dir)
def load_results(self, results_file: Optional[str] = None) -> Dict:
"""
Load test results from the specified file or search for it.
Args:
results_file: Specific results file to load (None to search in results_dir)
Returns:
Dict of loaded results
"""
if results_file:
file_path = Path(results_file)
elif self.results_dir:
# Find the most recent results.json file
json_files = list(self.results_dir.glob("**/results.json"))
if not json_files:
self.logger.error(f"No results.json files found in {self.results_dir}")
return {}
# Sort by modification time, newest first
file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0]
else:
self.logger.error("No results directory or file specified")
return {}
try:
self.logger.info(f"Loading results from {file_path}")
with open(file_path, 'r') as f:
results = json.load(f)
return results
except Exception as e:
self.logger.error(f"Error loading results: {e}")
return {}
def evaluate(self, results: Dict = None) -> Dict:
"""
Evaluate GAIA test results with comprehensive metrics.
Args:
results: Test results dict (None to load from file)
Returns:
Dict of evaluation metrics
"""
if not results:
results = self.load_results()
if not results:
return {}
# Calculate basic metrics
total_questions = len(results)
correct_answers = 0
partial_answers = 0
incorrect_answers = 0
errors = 0
timeouts = 0
classification_accuracy = 0
total_classified = 0
processing_times = []
confidence_scores = []
# Analyze each question
question_metrics = {}
for question_id, data in results.items():
# Extract validation status
validation = data.get('validation', {})
validation_status = validation.get('validation_status', 'error')
# Basic counters
if validation_status == 'correct':
correct_answers += 1
elif validation_status == 'partial':
partial_answers += 1
elif validation_status == 'incorrect':
incorrect_answers += 1
elif validation_status == 'error':
errors += 1
elif validation_status == 'timeout':
timeouts += 1
# Track processing time
if 'processing_time' in data:
processing_times.append(data['processing_time'])
# Track confidence scores
if 'confidence_score' in validation:
confidence_scores.append(validation['confidence_score'])
# Track classification accuracy
if 'classification' in data:
classification_data = data['classification']
total_classified += 1
if classification_data.get('is_correct', False):
classification_accuracy += 1
# Store detailed metrics per question
question_metrics[question_id] = {
'validation_status': validation_status,
'processing_time': data.get('processing_time'),
'confidence_score': validation.get('confidence_score'),
'classification': data.get('classification', {}).get('classification'),
'is_classification_correct': data.get('classification', {}).get('is_correct', False),
'tools_used': data.get('tools_used', []),
'steps_count': len(data.get('steps', [])),
}
# Calculate derived metrics
accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0
success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0
classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0
avg_processing_time = statistics.mean(processing_times) if processing_times else 0
median_processing_time = statistics.median(processing_times) if processing_times else 0
avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0
# Store metrics
self.metrics = {
'total_questions': total_questions,
'correct_answers': correct_answers,
'partial_answers': partial_answers,
'incorrect_answers': incorrect_answers,
'errors': errors,
'timeouts': timeouts,
'accuracy': accuracy,
'success_rate': success_rate,
'classification_accuracy': classification_accuracy_pct,
'avg_processing_time': avg_processing_time,
'median_processing_time': median_processing_time,
'avg_confidence_score': avg_confidence,
}
self.question_details = question_metrics
return self.metrics
def visualize_performance(self, output_dir: Optional[str] = None) -> None:
"""
Generate visualizations of performance metrics.
Args:
output_dir: Directory to save visualizations (None to use results_dir)
"""
if not self.metrics:
self.logger.error("No metrics available. Run evaluate() first.")
return
if not output_dir:
output_dir = self.results_dir
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
# Set the style
sns.set(style="whitegrid")
plt.rcParams.update({'font.size': 12})
# Create visualizations
self._create_accuracy_chart(output_path)
self._create_timing_chart(output_path)
self._create_question_type_chart(output_path)
self._create_confidence_distribution(output_path)
def _create_accuracy_chart(self, output_path: Path) -> None:
"""Create accuracy breakdown chart."""
categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout']
values = [
self.metrics['correct_answers'],
self.metrics['partial_answers'],
self.metrics['incorrect_answers'],
self.metrics['errors'],
self.metrics['timeouts']
]
plt.figure(figsize=(10, 6))
colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6']
ax = plt.bar(categories, values, color=colors)
for i, v in enumerate(values):
plt.text(i, v + 0.1, str(v), ha='center')
plt.title('Accuracy Breakdown')
plt.ylabel('Number of Questions')
plt.tight_layout()
plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300)
plt.close()
def _create_timing_chart(self, output_path: Path) -> None:
"""Create timing analysis chart."""
if not self.question_details:
return
# Extract times and statuses
times = []
statuses = []
labels = []
for q_id, details in self.question_details.items():
if details.get('processing_time'):
times.append(details['processing_time'])
statuses.append(details['validation_status'])
labels.append(q_id)
if not times:
return
# Convert to dataframe
df = pd.DataFrame({
'Question': labels,
'Time (s)': times,
'Status': statuses
})
# Sort by time
df = df.sort_values('Time (s)', ascending=False)
plt.figure(figsize=(12, 8))
# Color mapping
color_map = {
'correct': '#2ecc71',
'partial': '#f39c12',
'incorrect': '#e74c3c',
'error': '#7f8c8d',
'timeout': '#95a5a6'
}
sns.barplot(x='Time (s)', y='Question', hue='Status', data=df,
palette=color_map, dodge=False)
plt.title('Processing Time by Question')
plt.tight_layout()
plt.savefig(output_path / 'processing_times.png', dpi=300)
plt.close()
def _create_question_type_chart(self, output_path: Path) -> None:
"""Create question type performance chart."""
if not self.question_details:
return
# Group by classification type
question_types = {}
for q_id, details in self.question_details.items():
q_type = details.get('classification', 'unknown')
if q_type not in question_types:
question_types[q_type] = {
'total': 0,
'correct': 0,
'partial': 0,
'incorrect': 0,
'other': 0
}
question_types[q_type]['total'] += 1
status = details.get('validation_status')
if status == 'correct':
question_types[q_type]['correct'] += 1
elif status == 'partial':
question_types[q_type]['partial'] += 1
elif status == 'incorrect':
question_types[q_type]['incorrect'] += 1
else:
question_types[q_type]['other'] += 1
# Convert to dataframe
types = []
statuses = []
counts = []
for q_type, stats in question_types.items():
for status, count in stats.items():
if status != 'total':
types.append(q_type)
statuses.append(status)
counts.append(count)
df = pd.DataFrame({
'Question Type': types,
'Status': statuses,
'Count': counts
})
plt.figure(figsize=(12, 8))
# Create grouped bar chart
sns.barplot(x='Question Type', y='Count', hue='Status', data=df)
plt.title('Performance by Question Type')
plt.tight_layout()
plt.savefig(output_path / 'question_type_performance.png', dpi=300)
plt.close()
def _create_confidence_distribution(self, output_path: Path) -> None:
"""Create confidence score distribution chart."""
if not self.question_details:
return
# Extract confidence scores and statuses
scores = []
statuses = []
for details in self.question_details.values():
conf_score = details.get('confidence_score')
if conf_score is not None:
scores.append(conf_score)
statuses.append(details['validation_status'])
if not scores:
return
# Create dataframe
df = pd.DataFrame({
'Confidence Score': scores,
'Status': statuses
})
plt.figure(figsize=(10, 6))
# Create histogram with KDE
sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True)
plt.title('Confidence Score Distribution')
plt.tight_layout()
plt.savefig(output_path / 'confidence_distribution.png', dpi=300)
plt.close()
def generate_report(self, output_file: Optional[str] = None) -> str:
"""
Generate a comprehensive evaluation report.
Args:
output_file: Path to save the report (None for no saving)
Returns:
HTML report as string
"""
if not self.metrics:
self.logger.error("No metrics available. Run evaluate() first.")
return ""
# Create report HTML
report = f"""
<html>
<head>
<title>GAIA Performance Evaluation Report</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 20px; }}
h1 {{ color: #2c3e50; }}
h2 {{ color: #3498db; }}
.metric-card {{
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}}
.metric-title {{ font-weight: bold; margin-bottom: 8px; }}
.metric-value {{ font-size: 24px; color: #2c3e50; }}
.good {{ color: #2ecc71; }}
.medium {{ color: #f39c12; }}
.poor {{ color: #e74c3c; }}
table {{ border-collapse: collapse; width: 100%; }}
th, td {{ padding: 12px; text-align: left; border-bottom: 1px solid #ddd; }}
th {{ background-color: #f2f2f2; }}
tr:hover {{background-color: #f5f5f5;}}
.chart-container {{ margin-top: 30px; margin-bottom: 30px; }}
.chart {{ max-width: 100%; height: auto; }}
</style>
</head>
<body>
<h1>GAIA Performance Evaluation Report</h1>
<p>Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
<div class="metric-card">
<h2>Summary Metrics</h2>
<div class="metric-row">
<div class="metric-title">Accuracy</div>
<div class="metric-value {self._get_color_class(self.metrics['accuracy'])}">
{self.metrics['accuracy']:.2f}%
</div>
</div>
<div class="metric-row">
<div class="metric-title">Success Rate (Correct + Partial)</div>
<div class="metric-value {self._get_color_class(self.metrics['success_rate'])}">
{self.metrics['success_rate']:.2f}%
</div>
</div>
<div class="metric-row">
<div class="metric-title">Classification Accuracy</div>
<div class="metric-value {self._get_color_class(self.metrics['classification_accuracy'])}">
{self.metrics['classification_accuracy']:.2f}%
</div>
</div>
<div class="metric-row">
<div class="metric-title">Average Processing Time</div>
<div class="metric-value">
{self.metrics['avg_processing_time']:.2f} seconds
</div>
</div>
</div>
<div class="metric-card">
<h2>Accuracy Breakdown</h2>
<table>
<tr>
<th>Metric</th>
<th>Count</th>
<th>Percentage</th>
</tr>
<tr>
<td>Correct Answers</td>
<td>{self.metrics['correct_answers']}</td>
<td>{(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
</tr>
<tr>
<td>Partial Answers</td>
<td>{self.metrics['partial_answers']}</td>
<td>{(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
</tr>
<tr>
<td>Incorrect Answers</td>
<td>{self.metrics['incorrect_answers']}</td>
<td>{(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}%</td>
</tr>
<tr>
<td>Errors</td>
<td>{self.metrics['errors']}</td>
<td>{(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}%</td>
</tr>
<tr>
<td>Timeouts</td>
<td>{self.metrics['timeouts']}</td>
<td>{(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}%</td>
</tr>
</table>
</div>
<!-- Include charts if available -->
<div class="chart-container">
<h2>Performance Visualizations</h2>
<img class="chart" src="accuracy_breakdown.png" alt="Accuracy Breakdown" />
<img class="chart" src="processing_times.png" alt="Processing Times" />
<img class="chart" src="question_type_performance.png" alt="Question Type Performance" />
<img class="chart" src="confidence_distribution.png" alt="Confidence Distribution" />
</div>
<!-- Detailed results table -->
<div class="metric-card">
<h2>Detailed Question Results</h2>
<table>
<tr>
<th>Question ID</th>
<th>Status</th>
<th>Processing Time (s)</th>
<th>Confidence</th>
<th>Classification</th>
</tr>
{self._generate_question_rows()}
</table>
</div>
</body>
</html>
"""
# Save if output file provided
if output_file:
try:
with open(output_file, 'w') as f:
f.write(report)
self.logger.info(f"Report saved to {output_file}")
except Exception as e:
self.logger.error(f"Error saving report: {e}")
return report
def _get_color_class(self, value: float) -> str:
"""Get CSS class based on value."""
if value >= 80:
return "good"
elif value >= 60:
return "medium"
else:
return "poor"
def _generate_question_rows(self) -> str:
"""Generate HTML table rows for question details."""
rows = ""
for q_id, details in self.question_details.items():
status = details.get('validation_status', 'unknown')
proc_time = f"{details.get('processing_time', 'N/A'):.2f}" if details.get('processing_time') else 'N/A'
confidence = f"{details.get('confidence_score', 'N/A'):.2f}" if details.get('confidence_score') is not None else 'N/A'
classification = details.get('classification', 'unknown')
# Get status class
status_class = ""
if status == 'correct':
status_class = "good"
elif status == 'partial':
status_class = "medium"
elif status in ('incorrect', 'error', 'timeout'):
status_class = "poor"
rows += f"""
<tr>
<td>{q_id}</td>
<td class="{status_class}">{status}</td>
<td>{proc_time}</td>
<td>{confidence}</td>
<td>{classification}</td>
</tr>
"""
return rows
def compare_runs(self, results_files: List[str], labels: List[str]) -> Dict:
"""
Compare metrics across multiple test runs.
Args:
results_files: List of results files to compare
labels: Labels for each run
Returns:
Dict with comparison data
"""
if len(results_files) != len(labels):
self.logger.error("Number of result files must match number of labels")
return {}
comparison_data = {
'runs': {},
'metrics': ['accuracy', 'success_rate', 'classification_accuracy',
'avg_processing_time', 'correct_answers', 'partial_answers',
'incorrect_answers', 'errors', 'timeouts']
}
for i, (file_path, label) in enumerate(zip(results_files, labels)):
# Create a temporary evaluator to analyze this run
temp_evaluator = GAIAEvaluator(validation_file=self.validation_file)
results = temp_evaluator.load_results(file_path)
metrics = temp_evaluator.evaluate(results)
if metrics:
comparison_data['runs'][label] = metrics
return comparison_data
def visualize_comparison(self, comparison_data: Dict, output_dir: str) -> None:
"""
Create visualizations comparing multiple runs.
Args:
comparison_data: Data from compare_runs method
output_dir: Directory to save visualizations
"""
if not comparison_data or not comparison_data.get('runs'):
self.logger.error("No comparison data available")
return
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
# Set style
sns.set(style="whitegrid")
plt.rcParams.update({'font.size': 12})
# Get run labels and metrics
run_labels = list(comparison_data['runs'].keys())
all_metrics = comparison_data['metrics']
# Create bar chart for key metrics
key_metrics = ['accuracy', 'success_rate', 'classification_accuracy']
# Extract data
metric_values = {metric: [] for metric in key_metrics}
for run_label in run_labels:
run_data = comparison_data['runs'][run_label]
for metric in key_metrics:
metric_values[metric].append(run_data.get(metric, 0))
# Create grouped bar chart
plt.figure(figsize=(12, 8))
x = np.arange(len(run_labels))
width = 0.25
for i, metric in enumerate(key_metrics):
plt.bar(x + i*width - width, metric_values[metric], width, label=metric.replace('_', ' ').title())
plt.xlabel('Test Run')
plt.ylabel('Percentage')
plt.title('Key Metrics Comparison')
plt.xticks(x, run_labels)
plt.legend()
plt.tight_layout()
plt.savefig(output_path / 'metrics_comparison.png', dpi=300)
plt.close()
# Create processing time comparison
times = [comparison_data['runs'][label].get('avg_processing_time', 0) for label in run_labels]
plt.figure(figsize=(10, 6))
plt.bar(run_labels, times)
plt.xlabel('Test Run')
plt.ylabel('Average Processing Time (s)')
plt.title('Processing Time Comparison')
plt.tight_layout()
plt.savefig(output_path / 'processing_time_comparison.png', dpi=300)
plt.close()
if __name__ == "__main__":
import argparse
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
handlers=[logging.StreamHandler()]
)
# Parse arguments
parser = argparse.ArgumentParser(description="GAIA Benchmark Evaluation Tool")
parser.add_argument("--results_dir", type=str, help="Directory containing test results")
parser.add_argument("--results_file", type=str, help="Specific results file to evaluate")
parser.add_argument("--validation_file", type=str, default="gaia_validation_metadata.jsonl",
help="Path to validation metadata file")
parser.add_argument("--output_dir", type=str, help="Directory to save evaluation outputs")
parser.add_argument("--report_file", type=str, help="Path to save HTML report")
parser.add_argument("--compare", action="store_true", help="Compare multiple test runs")
parser.add_argument("--compare_files", type=str, nargs="+", help="List of files to compare")
parser.add_argument("--compare_labels", type=str, nargs="+", help="Labels for comparison runs")
args = parser.parse_args()
# Initialize evaluator
evaluator = GAIAEvaluator(
results_dir=args.results_dir,
validation_file=args.validation_file
)
# Handle comparison mode
if args.compare and args.compare_files and args.compare_labels:
comparison_data = evaluator.compare_runs(args.compare_files, args.compare_labels)
if comparison_data and args.output_dir:
evaluator.visualize_comparison(comparison_data, args.output_dir)
print(f"Comparison visualizations saved to {args.output_dir}")
else:
# Regular evaluation
if args.results_file:
results = evaluator.load_results(args.results_file)
else:
results = evaluator.load_results()
if results:
metrics = evaluator.evaluate(results)
print(f"Evaluation metrics: {metrics}")
if args.output_dir:
evaluator.visualize_performance(args.output_dir)
print(f"Performance visualizations saved to {args.output_dir}")
if args.report_file:
evaluator.generate_report(args.report_file)
print(f"Report saved to {args.report_file}")