|
|
|
|
|
import glob |
|
import math |
|
import os |
|
import random |
|
from copy import deepcopy |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import cv2 |
|
import numpy as np |
|
import psutil |
|
from torch.utils.data import Dataset |
|
from tqdm import tqdm |
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT |
|
|
|
from .utils import HELP_URL, IMG_FORMATS |
|
|
|
|
|
class BaseDataset(Dataset): |
|
""" |
|
Base dataset class for loading and processing image data. |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
imgsz (int, optional): Image size. Defaults to 640. |
|
cache (bool, optional): Cache images to RAM or disk during training. Defaults to False. |
|
augment (bool, optional): If True, data augmentation is applied. Defaults to True. |
|
hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None. |
|
prefix (str, optional): Prefix to print in log messages. Defaults to ''. |
|
rect (bool, optional): If True, rectangular training is used. Defaults to False. |
|
batch_size (int, optional): Size of batches. Defaults to None. |
|
stride (int, optional): Stride. Defaults to 32. |
|
pad (float, optional): Padding. Defaults to 0.0. |
|
single_cls (bool, optional): If True, single class training is used. Defaults to False. |
|
classes (list): List of included classes. Default is None. |
|
fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data). |
|
|
|
Attributes: |
|
im_files (list): List of image file paths. |
|
labels (list): List of label data dictionaries. |
|
ni (int): Number of images in the dataset. |
|
ims (list): List of loaded images. |
|
npy_files (list): List of numpy file paths. |
|
transforms (callable): Image transformation function. |
|
""" |
|
|
|
def __init__(self, |
|
img_path, |
|
imgsz=640, |
|
cache=False, |
|
augment=True, |
|
hyp=DEFAULT_CFG, |
|
prefix='', |
|
rect=False, |
|
batch_size=16, |
|
stride=32, |
|
pad=0.5, |
|
single_cls=False, |
|
classes=None, |
|
fraction=1.0): |
|
super().__init__() |
|
self.img_path = img_path |
|
self.imgsz = imgsz |
|
self.augment = augment |
|
self.single_cls = single_cls |
|
self.prefix = prefix |
|
self.fraction = fraction |
|
self.im_files = self.get_img_files(self.img_path) |
|
self.labels = self.get_labels() |
|
self.update_labels(include_class=classes) |
|
self.ni = len(self.labels) |
|
self.rect = rect |
|
self.batch_size = batch_size |
|
self.stride = stride |
|
self.pad = pad |
|
if self.rect: |
|
assert self.batch_size is not None |
|
self.set_rectangle() |
|
|
|
|
|
self.buffer = [] |
|
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0 |
|
|
|
|
|
if cache == 'ram' and not self.check_cache_ram(): |
|
cache = False |
|
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni |
|
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files] |
|
if cache: |
|
self.cache_images(cache) |
|
|
|
|
|
self.transforms = self.build_transforms(hyp=hyp) |
|
|
|
def get_img_files(self, img_path): |
|
"""Read image files.""" |
|
try: |
|
f = [] |
|
for p in img_path if isinstance(img_path, list) else [img_path]: |
|
p = Path(p) |
|
if p.is_dir(): |
|
f += glob.glob(str(p / '**' / '*.*'), recursive=True) |
|
|
|
elif p.is_file(): |
|
with open(p) as t: |
|
t = t.read().strip().splitlines() |
|
parent = str(p.parent) + os.sep |
|
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] |
|
|
|
else: |
|
raise FileNotFoundError(f'{self.prefix}{p} does not exist') |
|
im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) |
|
|
|
assert im_files, f'{self.prefix}No images found in {img_path}' |
|
except Exception as e: |
|
raise FileNotFoundError(f'{self.prefix}Error loading data from {img_path}\n{HELP_URL}') from e |
|
if self.fraction < 1: |
|
im_files = im_files[:round(len(im_files) * self.fraction)] |
|
return im_files |
|
|
|
def update_labels(self, include_class: Optional[list]): |
|
"""include_class, filter labels to include only these classes (optional).""" |
|
include_class_array = np.array(include_class).reshape(1, -1) |
|
for i in range(len(self.labels)): |
|
if include_class is not None: |
|
cls = self.labels[i]['cls'] |
|
bboxes = self.labels[i]['bboxes'] |
|
segments = self.labels[i]['segments'] |
|
keypoints = self.labels[i]['keypoints'] |
|
j = (cls == include_class_array).any(1) |
|
self.labels[i]['cls'] = cls[j] |
|
self.labels[i]['bboxes'] = bboxes[j] |
|
if segments: |
|
self.labels[i]['segments'] = [segments[si] for si, idx in enumerate(j) if idx] |
|
if keypoints is not None: |
|
self.labels[i]['keypoints'] = keypoints[j] |
|
if self.single_cls: |
|
self.labels[i]['cls'][:, 0] = 0 |
|
|
|
def load_image(self, i): |
|
"""Loads 1 image from dataset index 'i', returns (im, resized hw).""" |
|
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] |
|
if im is None: |
|
if fn.exists(): |
|
im = np.load(fn) |
|
else: |
|
im = cv2.imread(f) |
|
if im is None: |
|
raise FileNotFoundError(f'Image Not Found {f}') |
|
h0, w0 = im.shape[:2] |
|
r = self.imgsz / max(h0, w0) |
|
if r != 1: |
|
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA |
|
im = cv2.resize(im, (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz)), |
|
interpolation=interp) |
|
|
|
|
|
if self.augment: |
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] |
|
self.buffer.append(i) |
|
if len(self.buffer) >= self.max_buffer_length: |
|
j = self.buffer.pop(0) |
|
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None |
|
|
|
return im, (h0, w0), im.shape[:2] |
|
|
|
return self.ims[i], self.im_hw0[i], self.im_hw[i] |
|
|
|
def cache_images(self, cache): |
|
"""Cache images to memory or disk.""" |
|
b, gb = 0, 1 << 30 |
|
fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image |
|
with ThreadPool(NUM_THREADS) as pool: |
|
results = pool.imap(fcn, range(self.ni)) |
|
pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) |
|
for i, x in pbar: |
|
if cache == 'disk': |
|
b += self.npy_files[i].stat().st_size |
|
else: |
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x |
|
b += self.ims[i].nbytes |
|
pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})' |
|
pbar.close() |
|
|
|
def cache_images_to_disk(self, i): |
|
"""Saves an image as an *.npy file for faster loading.""" |
|
f = self.npy_files[i] |
|
if not f.exists(): |
|
np.save(f.as_posix(), cv2.imread(self.im_files[i])) |
|
|
|
def check_cache_ram(self, safety_margin=0.5): |
|
"""Check image caching requirements vs available memory.""" |
|
b, gb = 0, 1 << 30 |
|
n = min(self.ni, 30) |
|
for _ in range(n): |
|
im = cv2.imread(random.choice(self.im_files)) |
|
ratio = self.imgsz / max(im.shape[0], im.shape[1]) |
|
b += im.nbytes * ratio ** 2 |
|
mem_required = b * self.ni / n * (1 + safety_margin) |
|
mem = psutil.virtual_memory() |
|
cache = mem_required < mem.available |
|
if not cache: |
|
LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images ' |
|
f'with {int(safety_margin * 100)}% safety margin but only ' |
|
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' |
|
f"{'caching images ✅' if cache else 'not caching images ⚠️'}") |
|
return cache |
|
|
|
def set_rectangle(self): |
|
"""Sets the shape of bounding boxes for YOLO detections as rectangles.""" |
|
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) |
|
nb = bi[-1] + 1 |
|
|
|
s = np.array([x.pop('shape') for x in self.labels]) |
|
ar = s[:, 0] / s[:, 1] |
|
irect = ar.argsort() |
|
self.im_files = [self.im_files[i] for i in irect] |
|
self.labels = [self.labels[i] for i in irect] |
|
ar = ar[irect] |
|
|
|
|
|
shapes = [[1, 1]] * nb |
|
for i in range(nb): |
|
ari = ar[bi == i] |
|
mini, maxi = ari.min(), ari.max() |
|
if maxi < 1: |
|
shapes[i] = [maxi, 1] |
|
elif mini > 1: |
|
shapes[i] = [1, 1 / mini] |
|
|
|
self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride |
|
self.batch = bi |
|
|
|
def __getitem__(self, index): |
|
"""Returns transformed label information for given index.""" |
|
return self.transforms(self.get_image_and_label(index)) |
|
|
|
def get_image_and_label(self, index): |
|
"""Get and return label information from the dataset.""" |
|
label = deepcopy(self.labels[index]) |
|
label.pop('shape', None) |
|
label['img'], label['ori_shape'], label['resized_shape'] = self.load_image(index) |
|
label['ratio_pad'] = (label['resized_shape'][0] / label['ori_shape'][0], |
|
label['resized_shape'][1] / label['ori_shape'][1]) |
|
if self.rect: |
|
label['rect_shape'] = self.batch_shapes[self.batch[index]] |
|
return self.update_labels_info(label) |
|
|
|
def __len__(self): |
|
"""Returns the length of the labels list for the dataset.""" |
|
return len(self.labels) |
|
|
|
def update_labels_info(self, label): |
|
"""custom your label format here.""" |
|
return label |
|
|
|
def build_transforms(self, hyp=None): |
|
"""Users can custom augmentations here |
|
like: |
|
if self.augment: |
|
# Training transforms |
|
return Compose([]) |
|
else: |
|
# Val transforms |
|
return Compose([]) |
|
""" |
|
raise NotImplementedError |
|
|
|
def get_labels(self): |
|
"""Users can custom their own format here. |
|
Make sure your output is a list with each element like below: |
|
dict( |
|
im_file=im_file, |
|
shape=shape, # format: (height, width) |
|
cls=cls, |
|
bboxes=bboxes, # xywh |
|
segments=segments, # xy |
|
keypoints=keypoints, # xy |
|
normalized=True, # or False |
|
bbox_format="xyxy", # or xywh, ltwh |
|
) |
|
""" |
|
raise NotImplementedError |
|
|