|
|
|
|
|
import math |
|
import random |
|
from copy import deepcopy |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
from ultralytics.utils import LOGGER, colorstr |
|
from ultralytics.utils.checks import check_version |
|
from ultralytics.utils.instance import Instances |
|
from ultralytics.utils.metrics import bbox_ioa |
|
from ultralytics.utils.ops import segment2box |
|
|
|
from .utils import polygons2masks, polygons2masks_overlap |
|
|
|
|
|
|
|
class BaseTransform: |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def apply_image(self, labels): |
|
"""Applies image transformation to labels.""" |
|
pass |
|
|
|
def apply_instances(self, labels): |
|
"""Applies transformations to input 'labels' and returns object instances.""" |
|
pass |
|
|
|
def apply_semantic(self, labels): |
|
"""Applies semantic segmentation to an image.""" |
|
pass |
|
|
|
def __call__(self, labels): |
|
"""Applies label transformations to an image, instances and semantic masks.""" |
|
self.apply_image(labels) |
|
self.apply_instances(labels) |
|
self.apply_semantic(labels) |
|
|
|
|
|
class Compose: |
|
|
|
def __init__(self, transforms): |
|
"""Initializes the Compose object with a list of transforms.""" |
|
self.transforms = transforms |
|
|
|
def __call__(self, data): |
|
"""Applies a series of transformations to input data.""" |
|
for t in self.transforms: |
|
data = t(data) |
|
return data |
|
|
|
def append(self, transform): |
|
"""Appends a new transform to the existing list of transforms.""" |
|
self.transforms.append(transform) |
|
|
|
def tolist(self): |
|
"""Converts list of transforms to a standard Python list.""" |
|
return self.transforms |
|
|
|
def __repr__(self): |
|
"""Return string representation of object.""" |
|
format_string = f'{self.__class__.__name__}(' |
|
for t in self.transforms: |
|
format_string += '\n' |
|
format_string += f' {t}' |
|
format_string += '\n)' |
|
return format_string |
|
|
|
|
|
class BaseMixTransform: |
|
"""This implementation is from mmyolo.""" |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
self.dataset = dataset |
|
self.pre_transform = pre_transform |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" |
|
if random.uniform(0, 1) > self.p: |
|
return labels |
|
|
|
|
|
indexes = self.get_indexes() |
|
if isinstance(indexes, int): |
|
indexes = [indexes] |
|
|
|
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] |
|
|
|
if self.pre_transform is not None: |
|
for i, data in enumerate(mix_labels): |
|
mix_labels[i] = self.pre_transform(data) |
|
labels['mix_labels'] = mix_labels |
|
|
|
labels = self._mix_transform(labels) |
|
labels.pop('mix_labels', None) |
|
return labels |
|
|
|
def _mix_transform(self, labels): |
|
"""Applies MixUp or Mosaic augmentation to the label dictionary.""" |
|
raise NotImplementedError |
|
|
|
def get_indexes(self): |
|
"""Gets a list of shuffled indexes for mosaic augmentation.""" |
|
raise NotImplementedError |
|
|
|
|
|
class Mosaic(BaseMixTransform): |
|
""" |
|
Mosaic augmentation. |
|
|
|
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. |
|
The augmentation is applied to a dataset with a given probability. |
|
|
|
Attributes: |
|
dataset: The dataset on which the mosaic augmentation is applied. |
|
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. |
|
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. |
|
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). |
|
""" |
|
|
|
def __init__(self, dataset, imgsz=640, p=1.0, n=4): |
|
"""Initializes the object with a dataset, image size, probability, and border.""" |
|
assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.' |
|
assert n in (4, 9), 'grid must be equal to 4 or 9.' |
|
super().__init__(dataset=dataset, p=p) |
|
self.dataset = dataset |
|
self.imgsz = imgsz |
|
self.border = (-imgsz // 2, -imgsz // 2) |
|
self.n = n |
|
|
|
def get_indexes(self, buffer=True): |
|
"""Return a list of random indexes from the dataset.""" |
|
if buffer: |
|
return random.choices(list(self.dataset.buffer), k=self.n - 1) |
|
else: |
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] |
|
|
|
def _mix_transform(self, labels): |
|
"""Apply mixup transformation to the input image and labels.""" |
|
assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.' |
|
assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.' |
|
return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) |
|
|
|
def _mosaic4(self, labels): |
|
"""Create a 2x2 image mosaic.""" |
|
mosaic_labels = [] |
|
s = self.imgsz |
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) |
|
for i in range(4): |
|
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] |
|
|
|
img = labels_patch['img'] |
|
h, w = labels_patch.pop('resized_shape') |
|
|
|
|
|
if i == 0: |
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h |
|
elif i == 1: |
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc |
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h |
|
elif i == 2: |
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) |
|
elif i == 3: |
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) |
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) |
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] |
|
padw = x1a - x1b |
|
padh = y1a - y1b |
|
|
|
labels_patch = self._update_labels(labels_patch, padw, padh) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
final_labels['img'] = img4 |
|
return final_labels |
|
|
|
def _mosaic9(self, labels): |
|
"""Create a 3x3 image mosaic.""" |
|
mosaic_labels = [] |
|
s = self.imgsz |
|
hp, wp = -1, -1 |
|
for i in range(9): |
|
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] |
|
|
|
img = labels_patch['img'] |
|
h, w = labels_patch.pop('resized_shape') |
|
|
|
|
|
if i == 0: |
|
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) |
|
h0, w0 = h, w |
|
c = s, s, s + w, s + h |
|
elif i == 1: |
|
c = s, s - h, s + w, s |
|
elif i == 2: |
|
c = s + wp, s - h, s + wp + w, s |
|
elif i == 3: |
|
c = s + w0, s, s + w0 + w, s + h |
|
elif i == 4: |
|
c = s + w0, s + hp, s + w0 + w, s + hp + h |
|
elif i == 5: |
|
c = s + w0 - w, s + h0, s + w0, s + h0 + h |
|
elif i == 6: |
|
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h |
|
elif i == 7: |
|
c = s - w, s + h0 - h, s, s + h0 |
|
elif i == 8: |
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp |
|
|
|
padw, padh = c[:2] |
|
x1, y1, x2, y2 = (max(x, 0) for x in c) |
|
|
|
|
|
img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] |
|
hp, wp = h, w |
|
|
|
|
|
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) |
|
mosaic_labels.append(labels_patch) |
|
final_labels = self._cat_labels(mosaic_labels) |
|
|
|
final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]] |
|
return final_labels |
|
|
|
@staticmethod |
|
def _update_labels(labels, padw, padh): |
|
"""Update labels.""" |
|
nh, nw = labels['img'].shape[:2] |
|
labels['instances'].convert_bbox(format='xyxy') |
|
labels['instances'].denormalize(nw, nh) |
|
labels['instances'].add_padding(padw, padh) |
|
return labels |
|
|
|
def _cat_labels(self, mosaic_labels): |
|
"""Return labels with mosaic border instances clipped.""" |
|
if len(mosaic_labels) == 0: |
|
return {} |
|
cls = [] |
|
instances = [] |
|
imgsz = self.imgsz * 2 |
|
for labels in mosaic_labels: |
|
cls.append(labels['cls']) |
|
instances.append(labels['instances']) |
|
final_labels = { |
|
'im_file': mosaic_labels[0]['im_file'], |
|
'ori_shape': mosaic_labels[0]['ori_shape'], |
|
'resized_shape': (imgsz, imgsz), |
|
'cls': np.concatenate(cls, 0), |
|
'instances': Instances.concatenate(instances, axis=0), |
|
'mosaic_border': self.border} |
|
final_labels['instances'].clip(imgsz, imgsz) |
|
good = final_labels['instances'].remove_zero_area_boxes() |
|
final_labels['cls'] = final_labels['cls'][good] |
|
return final_labels |
|
|
|
|
|
class MixUp(BaseMixTransform): |
|
|
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: |
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) |
|
|
|
def get_indexes(self): |
|
"""Get a random index from the dataset.""" |
|
return random.randint(0, len(self.dataset) - 1) |
|
|
|
def _mix_transform(self, labels): |
|
"""Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" |
|
r = np.random.beta(32.0, 32.0) |
|
labels2 = labels['mix_labels'][0] |
|
labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8) |
|
labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0) |
|
labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0) |
|
return labels |
|
|
|
|
|
class RandomPerspective: |
|
|
|
def __init__(self, |
|
degrees=0.0, |
|
translate=0.1, |
|
scale=0.5, |
|
shear=0.0, |
|
perspective=0.0, |
|
border=(0, 0), |
|
pre_transform=None): |
|
self.degrees = degrees |
|
self.translate = translate |
|
self.scale = scale |
|
self.shear = shear |
|
self.perspective = perspective |
|
|
|
self.border = border |
|
self.pre_transform = pre_transform |
|
|
|
def affine_transform(self, img, border): |
|
"""Center.""" |
|
C = np.eye(3, dtype=np.float32) |
|
|
|
C[0, 2] = -img.shape[1] / 2 |
|
C[1, 2] = -img.shape[0] / 2 |
|
|
|
|
|
P = np.eye(3, dtype=np.float32) |
|
P[2, 0] = random.uniform(-self.perspective, self.perspective) |
|
P[2, 1] = random.uniform(-self.perspective, self.perspective) |
|
|
|
|
|
R = np.eye(3, dtype=np.float32) |
|
a = random.uniform(-self.degrees, self.degrees) |
|
|
|
s = random.uniform(1 - self.scale, 1 + self.scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
S = np.eye(3, dtype=np.float32) |
|
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) |
|
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) |
|
|
|
|
|
T = np.eye(3, dtype=np.float32) |
|
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] |
|
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] |
|
|
|
|
|
M = T @ S @ R @ P @ C |
|
|
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): |
|
if self.perspective: |
|
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) |
|
else: |
|
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) |
|
return img, M, s |
|
|
|
def apply_bboxes(self, bboxes, M): |
|
""" |
|
Apply affine to bboxes only. |
|
|
|
Args: |
|
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. |
|
""" |
|
n = len(bboxes) |
|
if n == 0: |
|
return bboxes |
|
|
|
xy = np.ones((n * 4, 3), dtype=bboxes.dtype) |
|
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) |
|
xy = xy @ M.T |
|
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) |
|
|
|
|
|
x = xy[:, [0, 2, 4, 6]] |
|
y = xy[:, [1, 3, 5, 7]] |
|
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T |
|
|
|
def apply_segments(self, segments, M): |
|
""" |
|
Apply affine to segments and generate new bboxes from segments. |
|
|
|
Args: |
|
segments (ndarray): list of segments, [num_samples, 500, 2]. |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. |
|
new_bboxes (ndarray): bboxes after affine, [N, 4]. |
|
""" |
|
n, num = segments.shape[:2] |
|
if n == 0: |
|
return [], segments |
|
|
|
xy = np.ones((n * num, 3), dtype=segments.dtype) |
|
segments = segments.reshape(-1, 2) |
|
xy[:, :2] = segments |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] |
|
segments = xy.reshape(n, -1, 2) |
|
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) |
|
return bboxes, segments |
|
|
|
def apply_keypoints(self, keypoints, M): |
|
""" |
|
Apply affine to keypoints. |
|
|
|
Args: |
|
keypoints (ndarray): keypoints, [N, 17, 3]. |
|
M (ndarray): affine matrix. |
|
|
|
Returns: |
|
new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. |
|
""" |
|
n, nkpt = keypoints.shape[:2] |
|
if n == 0: |
|
return keypoints |
|
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) |
|
visible = keypoints[..., 2].reshape(n * nkpt, 1) |
|
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] |
|
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) |
|
visible[out_mask] = 0 |
|
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) |
|
|
|
def __call__(self, labels): |
|
""" |
|
Affine images and targets. |
|
|
|
Args: |
|
labels (dict): a dict of `bboxes`, `segments`, `keypoints`. |
|
""" |
|
if self.pre_transform and 'mosaic_border' not in labels: |
|
labels = self.pre_transform(labels) |
|
labels.pop('ratio_pad', None) |
|
|
|
img = labels['img'] |
|
cls = labels['cls'] |
|
instances = labels.pop('instances') |
|
|
|
instances.convert_bbox(format='xyxy') |
|
instances.denormalize(*img.shape[:2][::-1]) |
|
|
|
border = labels.pop('mosaic_border', self.border) |
|
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 |
|
|
|
|
|
img, M, scale = self.affine_transform(img, border) |
|
|
|
bboxes = self.apply_bboxes(instances.bboxes, M) |
|
|
|
segments = instances.segments |
|
keypoints = instances.keypoints |
|
|
|
if len(segments): |
|
bboxes, segments = self.apply_segments(segments, M) |
|
|
|
if keypoints is not None: |
|
keypoints = self.apply_keypoints(keypoints, M) |
|
new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False) |
|
|
|
new_instances.clip(*self.size) |
|
|
|
|
|
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) |
|
|
|
i = self.box_candidates(box1=instances.bboxes.T, |
|
box2=new_instances.bboxes.T, |
|
area_thr=0.01 if len(segments) else 0.10) |
|
labels['instances'] = new_instances[i] |
|
labels['cls'] = cls[i] |
|
labels['img'] = img |
|
labels['resized_shape'] = img.shape[:2] |
|
return labels |
|
|
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): |
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) |
|
|
|
|
|
class RandomHSV: |
|
|
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: |
|
self.hgain = hgain |
|
self.sgain = sgain |
|
self.vgain = vgain |
|
|
|
def __call__(self, labels): |
|
"""Applies image HSV augmentation""" |
|
img = labels['img'] |
|
if self.hgain or self.sgain or self.vgain: |
|
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 |
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
dtype = img.dtype |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) |
|
return labels |
|
|
|
|
|
class RandomFlip: |
|
"""Applies random horizontal or vertical flip to an image with a given probability.""" |
|
|
|
def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None: |
|
assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}' |
|
assert 0 <= p <= 1.0 |
|
|
|
self.p = p |
|
self.direction = direction |
|
self.flip_idx = flip_idx |
|
|
|
def __call__(self, labels): |
|
"""Resize image and padding for detection, instance segmentation, pose.""" |
|
img = labels['img'] |
|
instances = labels.pop('instances') |
|
instances.convert_bbox(format='xywh') |
|
h, w = img.shape[:2] |
|
h = 1 if instances.normalized else h |
|
w = 1 if instances.normalized else w |
|
|
|
|
|
if self.direction == 'vertical' and random.random() < self.p: |
|
img = np.flipud(img) |
|
instances.flipud(h) |
|
if self.direction == 'horizontal' and random.random() < self.p: |
|
img = np.fliplr(img) |
|
instances.fliplr(w) |
|
|
|
if self.flip_idx is not None and instances.keypoints is not None: |
|
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) |
|
labels['img'] = np.ascontiguousarray(img) |
|
labels['instances'] = instances |
|
return labels |
|
|
|
|
|
class LetterBox: |
|
"""Resize image and padding for detection, instance segmentation, pose.""" |
|
|
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32): |
|
"""Initialize LetterBox object with specific parameters.""" |
|
self.new_shape = new_shape |
|
self.auto = auto |
|
self.scaleFill = scaleFill |
|
self.scaleup = scaleup |
|
self.stride = stride |
|
self.center = center |
|
|
|
def __call__(self, labels=None, image=None): |
|
"""Return updated labels and image with added border.""" |
|
if labels is None: |
|
labels = {} |
|
img = labels.get('img') if image is None else image |
|
shape = img.shape[:2] |
|
new_shape = labels.pop('rect_shape', self.new_shape) |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not self.scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if self.auto: |
|
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) |
|
elif self.scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
if self.center: |
|
dw /= 2 |
|
dh /= 2 |
|
if labels.get('ratio_pad'): |
|
labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) |
|
|
|
if shape[::-1] != new_unpad: |
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) |
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, |
|
value=(114, 114, 114)) |
|
|
|
if len(labels): |
|
labels = self._update_labels(labels, ratio, dw, dh) |
|
labels['img'] = img |
|
labels['resized_shape'] = new_shape |
|
return labels |
|
else: |
|
return img |
|
|
|
def _update_labels(self, labels, ratio, padw, padh): |
|
"""Update labels.""" |
|
labels['instances'].convert_bbox(format='xyxy') |
|
labels['instances'].denormalize(*labels['img'].shape[:2][::-1]) |
|
labels['instances'].scale(*ratio) |
|
labels['instances'].add_padding(padw, padh) |
|
return labels |
|
|
|
|
|
class CopyPaste: |
|
|
|
def __init__(self, p=0.5) -> None: |
|
self.p = p |
|
|
|
def __call__(self, labels): |
|
"""Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" |
|
im = labels['img'] |
|
cls = labels['cls'] |
|
h, w = im.shape[:2] |
|
instances = labels.pop('instances') |
|
instances.convert_bbox(format='xyxy') |
|
instances.denormalize(w, h) |
|
if self.p and len(instances.segments): |
|
n = len(instances) |
|
_, w, _ = im.shape |
|
im_new = np.zeros(im.shape, np.uint8) |
|
|
|
|
|
ins_flip = deepcopy(instances) |
|
ins_flip.fliplr(w) |
|
|
|
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) |
|
indexes = np.nonzero((ioa < 0.30).all(1))[0] |
|
n = len(indexes) |
|
for j in random.sample(list(indexes), k=round(self.p * n)): |
|
cls = np.concatenate((cls, cls[[j]]), axis=0) |
|
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) |
|
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) |
|
|
|
result = cv2.flip(im, 1) |
|
i = cv2.flip(im_new, 1).astype(bool) |
|
im[i] = result[i] |
|
|
|
labels['img'] = im |
|
labels['cls'] = cls |
|
labels['instances'] = instances |
|
return labels |
|
|
|
|
|
class Albumentations: |
|
"""Albumentations transformations. Optional, uninstall package to disable. |
|
Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive Histogram Equalization, |
|
random change of brightness and contrast, RandomGamma and lowering of image quality by compression.""" |
|
|
|
def __init__(self, p=1.0): |
|
"""Initialize the transform object for YOLO bbox formatted params.""" |
|
self.p = p |
|
self.transform = None |
|
prefix = colorstr('albumentations: ') |
|
try: |
|
import albumentations as A |
|
|
|
check_version(A.__version__, '1.0.3', hard=True) |
|
|
|
T = [ |
|
A.Blur(p=0.01), |
|
A.MedianBlur(p=0.01), |
|
A.ToGray(p=0.01), |
|
A.CLAHE(p=0.01), |
|
A.RandomBrightnessContrast(p=0.0), |
|
A.RandomGamma(p=0.0), |
|
|
|
|
|
|
|
|
|
] |
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) |
|
|
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) |
|
except ImportError: |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f'{prefix}{e}') |
|
|
|
def __call__(self, labels): |
|
"""Generates object detections and returns a dictionary with detection results.""" |
|
im = labels['img'] |
|
cls = labels['cls'] |
|
if len(cls): |
|
labels['instances'].convert_bbox('xywh') |
|
labels['instances'].normalize(*im.shape[:2][::-1]) |
|
bboxes = labels['instances'].bboxes |
|
|
|
if self.transform and random.random() < self.p: |
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) |
|
if len(new['class_labels']) > 0: |
|
labels['img'] = new['image'] |
|
labels['cls'] = np.array(new['class_labels']) |
|
bboxes = np.array(new['bboxes'], dtype=np.float32) |
|
labels['instances'].update(bboxes=bboxes) |
|
return labels |
|
|
|
|
|
|
|
class Format: |
|
|
|
def __init__(self, |
|
bbox_format='xywh', |
|
normalize=True, |
|
return_mask=False, |
|
return_keypoint=False, |
|
mask_ratio=4, |
|
mask_overlap=True, |
|
batch_idx=True): |
|
self.bbox_format = bbox_format |
|
self.normalize = normalize |
|
self.return_mask = return_mask |
|
self.return_keypoint = return_keypoint |
|
self.mask_ratio = mask_ratio |
|
self.mask_overlap = mask_overlap |
|
self.batch_idx = batch_idx |
|
|
|
def __call__(self, labels): |
|
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" |
|
img = labels.pop('img') |
|
h, w = img.shape[:2] |
|
cls = labels.pop('cls') |
|
instances = labels.pop('instances') |
|
instances.convert_bbox(format=self.bbox_format) |
|
instances.denormalize(w, h) |
|
nl = len(instances) |
|
|
|
if self.return_mask: |
|
if nl: |
|
masks, instances, cls = self._format_segments(instances, cls, w, h) |
|
masks = torch.from_numpy(masks) |
|
else: |
|
masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, |
|
img.shape[1] // self.mask_ratio) |
|
labels['masks'] = masks |
|
if self.normalize: |
|
instances.normalize(w, h) |
|
labels['img'] = self._format_img(img) |
|
labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl) |
|
labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) |
|
if self.return_keypoint: |
|
labels['keypoints'] = torch.from_numpy(instances.keypoints) |
|
|
|
if self.batch_idx: |
|
labels['batch_idx'] = torch.zeros(nl) |
|
return labels |
|
|
|
def _format_img(self, img): |
|
"""Format the image for YOLOv5 from Numpy array to PyTorch tensor.""" |
|
if len(img.shape) < 3: |
|
img = np.expand_dims(img, -1) |
|
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) |
|
img = torch.from_numpy(img) |
|
return img |
|
|
|
def _format_segments(self, instances, cls, w, h): |
|
"""convert polygon points to bitmap.""" |
|
segments = instances.segments |
|
if self.mask_overlap: |
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) |
|
masks = masks[None] |
|
instances = instances[sorted_idx] |
|
cls = cls[sorted_idx] |
|
else: |
|
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) |
|
|
|
return masks, instances, cls |
|
|
|
|
|
def v8_transforms(dataset, imgsz, hyp, stretch=False): |
|
"""Convert images to a size suitable for YOLOv8 training.""" |
|
pre_transform = Compose([ |
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), |
|
CopyPaste(p=hyp.copy_paste), |
|
RandomPerspective( |
|
degrees=hyp.degrees, |
|
translate=hyp.translate, |
|
scale=hyp.scale, |
|
shear=hyp.shear, |
|
perspective=hyp.perspective, |
|
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), |
|
)]) |
|
flip_idx = dataset.data.get('flip_idx', []) |
|
if dataset.use_keypoints: |
|
kpt_shape = dataset.data.get('kpt_shape', None) |
|
if len(flip_idx) == 0 and hyp.fliplr > 0.0: |
|
hyp.fliplr = 0.0 |
|
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") |
|
elif flip_idx and (len(flip_idx) != kpt_shape[0]): |
|
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}') |
|
|
|
return Compose([ |
|
pre_transform, |
|
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), |
|
Albumentations(p=1.0), |
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), |
|
RandomFlip(direction='vertical', p=hyp.flipud), |
|
RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) |
|
|
|
|
|
|
|
def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): |
|
|
|
if not isinstance(size, int): |
|
raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)') |
|
if any(mean) or any(std): |
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)]) |
|
else: |
|
return T.Compose([CenterCrop(size), ToTensor()]) |
|
|
|
|
|
def hsv2colorjitter(h, s, v): |
|
"""Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)""" |
|
return v, v, s, h |
|
|
|
|
|
def classify_albumentations( |
|
augment=True, |
|
size=224, |
|
scale=(0.08, 1.0), |
|
hflip=0.5, |
|
vflip=0.0, |
|
hsv_h=0.015, |
|
hsv_s=0.7, |
|
hsv_v=0.4, |
|
mean=(0.0, 0.0, 0.0), |
|
std=(1.0, 1.0, 1.0), |
|
auto_aug=False, |
|
): |
|
"""YOLOv8 classification Albumentations (optional, only used if package is installed).""" |
|
prefix = colorstr('albumentations: ') |
|
try: |
|
import albumentations as A |
|
from albumentations.pytorch import ToTensorV2 |
|
|
|
check_version(A.__version__, '1.0.3', hard=True) |
|
if augment: |
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] |
|
if auto_aug: |
|
|
|
LOGGER.info(f'{prefix}auto augmentations are currently not supported') |
|
else: |
|
if hflip > 0: |
|
T += [A.HorizontalFlip(p=hflip)] |
|
if vflip > 0: |
|
T += [A.VerticalFlip(p=vflip)] |
|
if any((hsv_h, hsv_s, hsv_v)): |
|
T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] |
|
else: |
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] |
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] |
|
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) |
|
return A.Compose(T) |
|
|
|
except ImportError: |
|
pass |
|
except Exception as e: |
|
LOGGER.info(f'{prefix}{e}') |
|
|
|
|
|
class ClassifyLetterBox: |
|
"""YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])""" |
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32): |
|
"""Resizes image and crops it to center with max dimensions 'h' and 'w'.""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
self.auto = auto |
|
self.stride = stride |
|
|
|
def __call__(self, im): |
|
imh, imw = im.shape[:2] |
|
r = min(self.h / imh, self.w / imw) |
|
h, w = round(imh * r), round(imw * r) |
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w |
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) |
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) |
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) |
|
return im_out |
|
|
|
|
|
class CenterCrop: |
|
"""YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])""" |
|
|
|
def __init__(self, size=640): |
|
"""Converts an image from numpy array to PyTorch tensor.""" |
|
super().__init__() |
|
self.h, self.w = (size, size) if isinstance(size, int) else size |
|
|
|
def __call__(self, im): |
|
imh, imw = im.shape[:2] |
|
m = min(imh, imw) |
|
top, left = (imh - m) // 2, (imw - m) // 2 |
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
class ToTensor: |
|
"""YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]).""" |
|
|
|
def __init__(self, half=False): |
|
"""Initialize YOLOv8 ToTensor object with optional half-precision support.""" |
|
super().__init__() |
|
self.half = half |
|
|
|
def __call__(self, im): |
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) |
|
im = torch.from_numpy(im) |
|
im = im.half() if self.half else im.float() |
|
im /= 255.0 |
|
return im |
|
|