Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import cv2 | |
import numpy as np | |
import torch | |
from lanms import merge_quadrangle_n9 as la_nms | |
from mmcv.ops import RoIAlignRotated | |
from mmocr.models.textdet.postprocess.utils import fill_hole | |
from .utils import (euclidean_distance_matrix, feature_embedding, | |
normalize_adjacent_matrix) | |
class ProposalLocalGraphs: | |
"""Propose text components and generate local graphs for GCN to classify | |
the k-nearest neighbors of a pivot in DRRG: Deep Relational Reasoning Graph | |
Network for Arbitrary Shape Text Detection. | |
[https://arxiv.org/abs/2003.07493]. This code was partially adapted from | |
https://github.com/GXYM/DRRG licensed under the MIT license. | |
Args: | |
k_at_hops (tuple(int)): The number of i-hop neighbors, i = 1, 2. | |
num_adjacent_linkages (int): The number of linkages when constructing | |
adjacent matrix. | |
node_geo_feat_len (int): The length of embedded geometric feature | |
vector of a text component. | |
pooling_scale (float): The spatial scale of rotated RoI-Align. | |
pooling_output_size (tuple(int)): The output size of rotated RoI-Align. | |
nms_thr (float): The locality-aware NMS threshold for text components. | |
min_width (float): The minimum width of text components. | |
max_width (float): The maximum width of text components. | |
comp_shrink_ratio (float): The shrink ratio of text components. | |
comp_w_h_ratio (float): The width to height ratio of text components. | |
comp_score_thr (float): The score threshold of text component. | |
text_region_thr (float): The threshold for text region probability map. | |
center_region_thr (float): The threshold for text center region | |
probability map. | |
center_region_area_thr (int): The threshold for filtering small-sized | |
text center region. | |
""" | |
def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len, | |
pooling_scale, pooling_output_size, nms_thr, min_width, | |
max_width, comp_shrink_ratio, comp_w_h_ratio, comp_score_thr, | |
text_region_thr, center_region_thr, center_region_area_thr): | |
assert len(k_at_hops) == 2 | |
assert isinstance(k_at_hops, tuple) | |
assert isinstance(num_adjacent_linkages, int) | |
assert isinstance(node_geo_feat_len, int) | |
assert isinstance(pooling_scale, float) | |
assert isinstance(pooling_output_size, tuple) | |
assert isinstance(nms_thr, float) | |
assert isinstance(min_width, float) | |
assert isinstance(max_width, float) | |
assert isinstance(comp_shrink_ratio, float) | |
assert isinstance(comp_w_h_ratio, float) | |
assert isinstance(comp_score_thr, float) | |
assert isinstance(text_region_thr, float) | |
assert isinstance(center_region_thr, float) | |
assert isinstance(center_region_area_thr, int) | |
self.k_at_hops = k_at_hops | |
self.active_connection = num_adjacent_linkages | |
self.local_graph_depth = len(self.k_at_hops) | |
self.node_geo_feat_dim = node_geo_feat_len | |
self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale) | |
self.nms_thr = nms_thr | |
self.min_width = min_width | |
self.max_width = max_width | |
self.comp_shrink_ratio = comp_shrink_ratio | |
self.comp_w_h_ratio = comp_w_h_ratio | |
self.comp_score_thr = comp_score_thr | |
self.text_region_thr = text_region_thr | |
self.center_region_thr = center_region_thr | |
self.center_region_area_thr = center_region_area_thr | |
def propose_comps(self, score_map, top_height_map, bot_height_map, sin_map, | |
cos_map, comp_score_thr, min_width, max_width, | |
comp_shrink_ratio, comp_w_h_ratio): | |
"""Propose text components. | |
Args: | |
score_map (ndarray): The score map for NMS. | |
top_height_map (ndarray): The predicted text height map from each | |
pixel in text center region to top sideline. | |
bot_height_map (ndarray): The predicted text height map from each | |
pixel in text center region to bottom sideline. | |
sin_map (ndarray): The predicted sin(theta) map. | |
cos_map (ndarray): The predicted cos(theta) map. | |
comp_score_thr (float): The score threshold of text component. | |
min_width (float): The minimum width of text components. | |
max_width (float): The maximum width of text components. | |
comp_shrink_ratio (float): The shrink ratio of text components. | |
comp_w_h_ratio (float): The width to height ratio of text | |
components. | |
Returns: | |
text_comps (ndarray): The text components. | |
""" | |
comp_centers = np.argwhere(score_map > comp_score_thr) | |
comp_centers = comp_centers[np.argsort(comp_centers[:, 0])] | |
y = comp_centers[:, 0] | |
x = comp_centers[:, 1] | |
top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio | |
bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio | |
sin = sin_map[y, x].reshape((-1, 1)) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
top_mid_pts = comp_centers + np.hstack( | |
[top_height * sin, top_height * cos]) | |
bot_mid_pts = comp_centers - np.hstack( | |
[bot_height * sin, bot_height * cos]) | |
width = (top_height + bot_height) * comp_w_h_ratio | |
width = np.clip(width, min_width, max_width) | |
r = width / 2 | |
tl = top_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
tr = top_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
br = bot_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
bl = bot_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32) | |
score = score_map[y, x].reshape((-1, 1)) | |
text_comps = np.hstack([text_comps, score]) | |
return text_comps | |
def propose_comps_and_attribs(self, text_region_map, center_region_map, | |
top_height_map, bot_height_map, sin_map, | |
cos_map): | |
"""Generate text components and attributes. | |
Args: | |
text_region_map (ndarray): The predicted text region probability | |
map. | |
center_region_map (ndarray): The predicted text center region | |
probability map. | |
top_height_map (ndarray): The predicted text height map from each | |
pixel in text center region to top sideline. | |
bot_height_map (ndarray): The predicted text height map from each | |
pixel in text center region to bottom sideline. | |
sin_map (ndarray): The predicted sin(theta) map. | |
cos_map (ndarray): The predicted cos(theta) map. | |
Returns: | |
comp_attribs (ndarray): The text component attributes. | |
text_comps (ndarray): The text components. | |
""" | |
assert (text_region_map.shape == center_region_map.shape == | |
top_height_map.shape == bot_height_map.shape == sin_map.shape | |
== cos_map.shape) | |
text_mask = text_region_map > self.text_region_thr | |
center_region_mask = (center_region_map > | |
self.center_region_thr) * text_mask | |
scale = np.sqrt(1.0 / (sin_map**2 + cos_map**2 + 1e-8)) | |
sin_map, cos_map = sin_map * scale, cos_map * scale | |
center_region_mask = fill_hole(center_region_mask) | |
center_region_contours, _ = cv2.findContours( | |
center_region_mask.astype(np.uint8), cv2.RETR_TREE, | |
cv2.CHAIN_APPROX_SIMPLE) | |
mask_sz = center_region_map.shape | |
comp_list = [] | |
for contour in center_region_contours: | |
current_center_mask = np.zeros(mask_sz) | |
cv2.drawContours(current_center_mask, [contour], -1, 1, -1) | |
if current_center_mask.sum() <= self.center_region_area_thr: | |
continue | |
score_map = text_region_map * current_center_mask | |
text_comps = self.propose_comps(score_map, top_height_map, | |
bot_height_map, sin_map, cos_map, | |
self.comp_score_thr, | |
self.min_width, self.max_width, | |
self.comp_shrink_ratio, | |
self.comp_w_h_ratio) | |
text_comps = la_nms(text_comps, self.nms_thr) | |
text_comp_mask = np.zeros(mask_sz) | |
text_comp_boxes = text_comps[:, :8].reshape( | |
(-1, 4, 2)).astype(np.int32) | |
cv2.drawContours(text_comp_mask, text_comp_boxes, -1, 1, -1) | |
if (text_comp_mask * text_mask).sum() < text_comp_mask.sum() * 0.5: | |
continue | |
if text_comps.shape[-1] > 0: | |
comp_list.append(text_comps) | |
if len(comp_list) <= 0: | |
return None, None | |
text_comps = np.vstack(comp_list) | |
text_comp_boxes = text_comps[:, :8].reshape((-1, 4, 2)) | |
centers = np.mean(text_comp_boxes, axis=1).astype(np.int32) | |
x = centers[:, 0] | |
y = centers[:, 1] | |
scores = [] | |
for text_comp_box in text_comp_boxes: | |
text_comp_box[:, 0] = np.clip(text_comp_box[:, 0], 0, | |
mask_sz[1] - 1) | |
text_comp_box[:, 1] = np.clip(text_comp_box[:, 1], 0, | |
mask_sz[0] - 1) | |
min_coord = np.min(text_comp_box, axis=0).astype(np.int32) | |
max_coord = np.max(text_comp_box, axis=0).astype(np.int32) | |
text_comp_box = text_comp_box - min_coord | |
box_sz = (max_coord - min_coord + 1) | |
temp_comp_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8) | |
cv2.fillPoly(temp_comp_mask, [text_comp_box.astype(np.int32)], 1) | |
temp_region_patch = text_region_map[min_coord[1]:(max_coord[1] + | |
1), | |
min_coord[0]:(max_coord[0] + | |
1)] | |
score = cv2.mean(temp_region_patch, temp_comp_mask)[0] | |
scores.append(score) | |
scores = np.array(scores).reshape((-1, 1)) | |
text_comps = np.hstack([text_comps[:, :-1], scores]) | |
h = top_height_map[y, x].reshape( | |
(-1, 1)) + bot_height_map[y, x].reshape((-1, 1)) | |
w = np.clip(h * self.comp_w_h_ratio, self.min_width, self.max_width) | |
sin = sin_map[y, x].reshape((-1, 1)) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
x = x.reshape((-1, 1)) | |
y = y.reshape((-1, 1)) | |
comp_attribs = np.hstack([x, y, h, w, cos, sin]) | |
return comp_attribs, text_comps | |
def generate_local_graphs(self, sorted_dist_inds, node_feats): | |
"""Generate local graphs and graph convolution network input data. | |
Args: | |
sorted_dist_inds (ndarray): The node indices sorted according to | |
the Euclidean distance. | |
node_feats (tensor): The features of nodes in graph. | |
Returns: | |
local_graphs_node_feats (tensor): The features of nodes in local | |
graphs. | |
adjacent_matrices (tensor): The adjacent matrices. | |
pivots_knn_inds (tensor): The k-nearest neighbor indices in | |
local graphs. | |
pivots_local_graphs (tensor): The indices of nodes in local | |
graphs. | |
""" | |
assert sorted_dist_inds.ndim == 2 | |
assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] == | |
node_feats.shape[0]) | |
knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1] | |
pivot_local_graphs = [] | |
pivot_knns = [] | |
device = node_feats.device | |
for pivot_ind, knn in enumerate(knn_graph): | |
local_graph_neighbors = set(knn) | |
for neighbor_ind in knn: | |
local_graph_neighbors.update( | |
set(sorted_dist_inds[neighbor_ind, | |
1:self.k_at_hops[1] + 1])) | |
local_graph_neighbors.discard(pivot_ind) | |
pivot_local_graph = list(local_graph_neighbors) | |
pivot_local_graph.insert(0, pivot_ind) | |
pivot_knn = [pivot_ind] + list(knn) | |
pivot_local_graphs.append(pivot_local_graph) | |
pivot_knns.append(pivot_knn) | |
num_max_nodes = max([ | |
len(pivot_local_graph) for pivot_local_graph in pivot_local_graphs | |
]) | |
local_graphs_node_feat = [] | |
adjacent_matrices = [] | |
pivots_knn_inds = [] | |
pivots_local_graphs = [] | |
for graph_ind, pivot_knn in enumerate(pivot_knns): | |
pivot_local_graph = pivot_local_graphs[graph_ind] | |
num_nodes = len(pivot_local_graph) | |
pivot_ind = pivot_local_graph[0] | |
node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)} | |
knn_inds = torch.tensor([node2ind_map[i] | |
for i in pivot_knn[1:]]).long().to(device) | |
pivot_feats = node_feats[pivot_ind] | |
normalized_feats = node_feats[pivot_local_graph] - pivot_feats | |
adjacent_matrix = np.zeros((num_nodes, num_nodes)) | |
for node in pivot_local_graph: | |
neighbors = sorted_dist_inds[node, | |
1:self.active_connection + 1] | |
for neighbor in neighbors: | |
if neighbor in pivot_local_graph: | |
adjacent_matrix[node2ind_map[node], | |
node2ind_map[neighbor]] = 1 | |
adjacent_matrix[node2ind_map[neighbor], | |
node2ind_map[node]] = 1 | |
adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix) | |
pad_adjacent_matrix = torch.zeros((num_max_nodes, num_max_nodes), | |
dtype=torch.float, | |
device=device) | |
pad_adjacent_matrix[:num_nodes, :num_nodes] = torch.from_numpy( | |
adjacent_matrix) | |
pad_normalized_feats = torch.cat([ | |
normalized_feats, | |
torch.zeros( | |
(num_max_nodes - num_nodes, normalized_feats.shape[1]), | |
dtype=torch.float, | |
device=device) | |
], | |
dim=0) | |
local_graph_nodes = torch.tensor(pivot_local_graph) | |
local_graph_nodes = torch.cat([ | |
local_graph_nodes, | |
torch.zeros(num_max_nodes - num_nodes, dtype=torch.long) | |
], | |
dim=-1) | |
local_graphs_node_feat.append(pad_normalized_feats) | |
adjacent_matrices.append(pad_adjacent_matrix) | |
pivots_knn_inds.append(knn_inds) | |
pivots_local_graphs.append(local_graph_nodes) | |
local_graphs_node_feat = torch.stack(local_graphs_node_feat, 0) | |
adjacent_matrices = torch.stack(adjacent_matrices, 0) | |
pivots_knn_inds = torch.stack(pivots_knn_inds, 0) | |
pivots_local_graphs = torch.stack(pivots_local_graphs, 0) | |
return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, | |
pivots_local_graphs) | |
def __call__(self, preds, feat_maps): | |
"""Generate local graphs and graph convolutional network input data. | |
Args: | |
preds (tensor): The predicted maps. | |
feat_maps (tensor): The feature maps to extract content feature of | |
text components. | |
Returns: | |
none_flag (bool): The flag showing whether the number of proposed | |
text components is 0. | |
local_graphs_node_feats (tensor): The features of nodes in local | |
graphs. | |
adjacent_matrices (tensor): The adjacent matrices. | |
pivots_knn_inds (tensor): The k-nearest neighbor indices in | |
local graphs. | |
pivots_local_graphs (tensor): The indices of nodes in local | |
graphs. | |
text_comps (ndarray): The predicted text components. | |
""" | |
if preds.ndim == 4: | |
assert preds.shape[0] == 1 | |
preds = torch.squeeze(preds) | |
pred_text_region = torch.sigmoid(preds[0]).data.cpu().numpy() | |
pred_center_region = torch.sigmoid(preds[1]).data.cpu().numpy() | |
pred_sin_map = preds[2].data.cpu().numpy() | |
pred_cos_map = preds[3].data.cpu().numpy() | |
pred_top_height_map = preds[4].data.cpu().numpy() | |
pred_bot_height_map = preds[5].data.cpu().numpy() | |
device = preds.device | |
comp_attribs, text_comps = self.propose_comps_and_attribs( | |
pred_text_region, pred_center_region, pred_top_height_map, | |
pred_bot_height_map, pred_sin_map, pred_cos_map) | |
if comp_attribs is None or len(comp_attribs) < 2: | |
none_flag = True | |
return none_flag, (0, 0, 0, 0, 0) | |
comp_centers = comp_attribs[:, 0:2] | |
distance_matrix = euclidean_distance_matrix(comp_centers, comp_centers) | |
geo_feats = feature_embedding(comp_attribs, self.node_geo_feat_dim) | |
geo_feats = torch.from_numpy(geo_feats).to(preds.device) | |
batch_id = np.zeros((comp_attribs.shape[0], 1), dtype=np.float32) | |
comp_attribs = comp_attribs.astype(np.float32) | |
angle = np.arccos(comp_attribs[:, -2]) * np.sign(comp_attribs[:, -1]) | |
angle = angle.reshape((-1, 1)) | |
rotated_rois = np.hstack([batch_id, comp_attribs[:, :-2], angle]) | |
rois = torch.from_numpy(rotated_rois).to(device) | |
content_feats = self.pooling(feat_maps, rois) | |
content_feats = content_feats.view(content_feats.shape[0], | |
-1).to(device) | |
node_feats = torch.cat([content_feats, geo_feats], dim=-1) | |
sorted_dist_inds = np.argsort(distance_matrix, axis=1) | |
(local_graphs_node_feat, adjacent_matrices, pivots_knn_inds, | |
pivots_local_graphs) = self.generate_local_graphs( | |
sorted_dist_inds, node_feats) | |
none_flag = False | |
return none_flag, (local_graphs_node_feat, adjacent_matrices, | |
pivots_knn_inds, pivots_local_graphs, text_comps) | |