Spaces:
Build error
Build error
# pytorch 1.5.0 | |
import copy | |
import math | |
import warnings | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter | |
from torch.nn import functional as F | |
from torch.nn.init import constant_, xavier_uniform_ | |
def multi_head_attention_forward(query, # type: Tensor | |
key, # type: Tensor | |
value, # type: Tensor | |
embed_dim_to_check, # type: int | |
num_heads, # type: int | |
in_proj_weight, # type: Tensor | |
in_proj_bias, # type: Tensor | |
bias_k, # type: Optional[Tensor] | |
bias_v, # type: Optional[Tensor] | |
add_zero_attn, # type: bool | |
dropout_p, # type: float | |
out_proj_weight, # type: Tensor | |
out_proj_bias, # type: Tensor | |
training=True, # type: bool | |
key_padding_mask=None, # type: Optional[Tensor] | |
need_weights=True, # type: bool | |
attn_mask=None, # type: Optional[Tensor] | |
use_separate_proj_weight=False, # type: bool | |
q_proj_weight=None, # type: Optional[Tensor] | |
k_proj_weight=None, # type: Optional[Tensor] | |
v_proj_weight=None, # type: Optional[Tensor] | |
static_k=None, # type: Optional[Tensor] | |
static_v=None # type: Optional[Tensor] | |
): | |
# type: (...) -> Tuple[Tensor, Optional[Tensor]] | |
r""" | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
embed_dim_to_check: total dimension of the model. | |
num_heads: parallel attention heads. | |
in_proj_weight, in_proj_bias: input projection weight and bias. | |
bias_k, bias_v: bias of the key and value sequences to be added at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
dropout_p: probability of an element to be zeroed. | |
out_proj_weight, out_proj_bias: the output projection weight and bias. | |
training: apply dropout if is ``True``. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. This is an binary mask. When the value is True, | |
the corresponding value on the attention layer will be filled with -inf. | |
need_weights: output attn_output_weights. | |
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
use_separate_proj_weight: the function accept the proj. weights for query, key, | |
and value in different forms. If false, in_proj_weight will be used, which is | |
a combination of q_proj_weight, k_proj_weight, v_proj_weight. | |
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. | |
static_k, static_v: static key and value used for attention operators. | |
Shape: | |
Inputs: | |
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions | |
will be unchanged. If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked | |
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
Outputs: | |
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
E is the embedding dimension. | |
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
L is the target sequence length, S is the source sequence length. | |
""" | |
# if not torch.jit.is_scripting(): | |
# tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, | |
# out_proj_weight, out_proj_bias) | |
# if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): | |
# return handle_torch_function( | |
# multi_head_attention_forward, tens_ops, query, key, value, | |
# embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, | |
# bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, | |
# out_proj_bias, training=training, key_padding_mask=key_padding_mask, | |
# need_weights=need_weights, attn_mask=attn_mask, | |
# use_separate_proj_weight=use_separate_proj_weight, | |
# q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, | |
# v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == embed_dim_to_check | |
assert key.size() == value.size() | |
head_dim = embed_dim // num_heads | |
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" | |
scaling = float(head_dim) ** -0.5 | |
if not use_separate_proj_weight: | |
if torch.equal(query, key) and torch.equal(key, value): | |
# self-attention | |
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) | |
elif torch.equal(key, value): | |
# encoder-decoder attention | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = F.linear(query, _w, _b) | |
if key is None: | |
assert value is None | |
k = None | |
v = None | |
else: | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
k, v = F.linear(key, _w, _b).chunk(2, dim=-1) | |
else: | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = 0 | |
_end = embed_dim | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
q = F.linear(query, _w, _b) | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim | |
_end = embed_dim * 2 | |
_w = in_proj_weight[_start:_end, :] | |
if _b is not None: | |
_b = _b[_start:_end] | |
k = F.linear(key, _w, _b) | |
# This is inline in_proj function with in_proj_weight and in_proj_bias | |
_b = in_proj_bias | |
_start = embed_dim * 2 | |
_end = None | |
_w = in_proj_weight[_start:, :] | |
if _b is not None: | |
_b = _b[_start:] | |
v = F.linear(value, _w, _b) | |
else: | |
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) | |
len1, len2 = q_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == query.size(-1) | |
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) | |
len1, len2 = k_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == key.size(-1) | |
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) | |
len1, len2 = v_proj_weight_non_opt.size() | |
assert len1 == embed_dim and len2 == value.size(-1) | |
if in_proj_bias is not None: | |
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) | |
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) | |
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) | |
else: | |
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias) | |
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias) | |
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias) | |
q = q * scaling | |
if attn_mask is not None: | |
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ | |
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ | |
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) | |
if attn_mask.dtype == torch.uint8: | |
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
attn_mask = attn_mask.to(torch.bool) | |
if attn_mask.dim() == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: | |
raise RuntimeError('The size of the 2D attn_mask is not correct.') | |
elif attn_mask.dim() == 3: | |
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: | |
raise RuntimeError('The size of the 3D attn_mask is not correct.') | |
else: | |
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) | |
# attn_mask's dim is 3 now. | |
# # convert ByteTensor key_padding_mask to bool | |
# if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: | |
# warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") | |
# key_padding_mask = key_padding_mask.to(torch.bool) | |
if bias_k is not None and bias_v is not None: | |
if static_k is None and static_v is None: | |
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
else: | |
assert static_k is None, "bias cannot be added to static key." | |
assert static_v is None, "bias cannot be added to static value." | |
else: | |
assert bias_k is None | |
assert bias_v is None | |
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | |
if k is not None: | |
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
if v is not None: | |
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) | |
if static_k is not None: | |
assert static_k.size(0) == bsz * num_heads | |
assert static_k.size(2) == head_dim | |
k = static_k | |
if static_v is not None: | |
assert static_v.size(0) == bsz * num_heads | |
assert static_v.size(2) == head_dim | |
v = static_v | |
src_len = k.size(1) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
if add_zero_attn: | |
src_len += 1 | |
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) | |
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_output_weights.masked_fill_(attn_mask, float('-inf')) | |
else: | |
attn_output_weights += attn_mask | |
if key_padding_mask is not None: | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
attn_output_weights = attn_output_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
float('-inf'), | |
) | |
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) | |
attn_output_weights = F.softmax( | |
attn_output_weights, dim=-1) | |
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training) | |
attn_output = torch.bmm(attn_output_weights, v) | |
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] | |
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) | |
if need_weights: | |
# average attention weights over heads | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
return attn_output, attn_output_weights.sum(dim=1) / num_heads | |
else: | |
return attn_output, None | |
class MultiheadAttention(Module): | |
r"""Allows the model to jointly attend to information | |
from different representation subspaces. | |
See reference: Attention Is All You Need | |
.. math:: | |
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O | |
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) | |
Args: | |
embed_dim: total dimension of the model. | |
num_heads: parallel attention heads. | |
dropout: a Dropout layer on attn_output_weights. Default: 0.0. | |
bias: add bias as module parameter. Default: True. | |
add_bias_kv: add bias to the key and value sequences at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
kdim: total number of features in key. Default: None. | |
vdim: total number of features in value. Default: None. | |
Note: if kdim and vdim are None, they will be set to embed_dim such that | |
query, key, and value have the same number of features. | |
Examples:: | |
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) | |
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) | |
""" | |
# __annotations__ = { | |
# 'bias_k': torch._jit_internal.Optional[torch.Tensor], | |
# 'bias_v': torch._jit_internal.Optional[torch.Tensor], | |
# } | |
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight'] | |
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): | |
super(MultiheadAttention, self).__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
if self._qkv_same_embed_dim is False: | |
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) | |
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) | |
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) | |
self.register_parameter('in_proj_weight', None) | |
else: | |
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) | |
self.register_parameter('q_proj_weight', None) | |
self.register_parameter('k_proj_weight', None) | |
self.register_parameter('v_proj_weight', None) | |
if bias: | |
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) | |
else: | |
self.register_parameter('in_proj_bias', None) | |
self.out_proj = Linear(embed_dim, embed_dim, bias=bias) | |
if add_bias_kv: | |
self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) | |
self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) | |
else: | |
self.bias_k = self.bias_v = None | |
self.add_zero_attn = add_zero_attn | |
self._reset_parameters() | |
def _reset_parameters(self): | |
if self._qkv_same_embed_dim: | |
xavier_uniform_(self.in_proj_weight) | |
else: | |
xavier_uniform_(self.q_proj_weight) | |
xavier_uniform_(self.k_proj_weight) | |
xavier_uniform_(self.v_proj_weight) | |
if self.in_proj_bias is not None: | |
constant_(self.in_proj_bias, 0.) | |
constant_(self.out_proj.bias, 0.) | |
if self.bias_k is not None: | |
xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
xavier_normal_(self.bias_v) | |
def __setstate__(self, state): | |
# Support loading old MultiheadAttention checkpoints generated by v1.1.0 | |
if '_qkv_same_embed_dim' not in state: | |
state['_qkv_same_embed_dim'] = True | |
super(MultiheadAttention, self).__setstate__(state) | |
def forward(self, query, key, value, key_padding_mask=None, | |
need_weights=True, attn_mask=None): | |
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] | |
r""" | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. This is an binary mask. When the value is True, | |
the corresponding value on the attention layer will be filled with -inf. | |
need_weights: output attn_output_weights. | |
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
Shape: | |
- Inputs: | |
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
If a ByteTensor is provided, the non-zero positions will be ignored while the position | |
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked | |
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
- Outputs: | |
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
E is the embedding dimension. | |
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, | |
L is the target sequence length, S is the source sequence length. | |
""" | |
if not self._qkv_same_embed_dim: | |
return multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, need_weights=need_weights, | |
attn_mask=attn_mask, use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, | |
v_proj_weight=self.v_proj_weight) | |
else: | |
return multi_head_attention_forward( | |
query, key, value, self.embed_dim, self.num_heads, | |
self.in_proj_weight, self.in_proj_bias, | |
self.bias_k, self.bias_v, self.add_zero_attn, | |
self.dropout, self.out_proj.weight, self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, need_weights=need_weights, | |
attn_mask=attn_mask) | |
class Transformer(Module): | |
r"""A transformer model. User is able to modify the attributes as needed. The architecture | |
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, | |
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and | |
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information | |
Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) | |
model with corresponding parameters. | |
Args: | |
d_model: the number of expected features in the encoder/decoder inputs (default=512). | |
nhead: the number of heads in the multiheadattention models (default=8). | |
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6). | |
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). | |
dim_feedforward: the dimension of the feedforward network model (default=2048). | |
dropout: the dropout value (default=0.1). | |
activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu). | |
custom_encoder: custom encoder (default=None). | |
custom_decoder: custom decoder (default=None). | |
Examples:: | |
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) | |
>>> src = torch.rand((10, 32, 512)) | |
>>> tgt = torch.rand((20, 32, 512)) | |
>>> out = transformer_model(src, tgt) | |
Note: A full example to apply nn.Transformer module for the word language model is available in | |
https://github.com/pytorch/examples/tree/master/word_language_model | |
""" | |
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, | |
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, | |
activation="relu", custom_encoder=None, custom_decoder=None): | |
super(Transformer, self).__init__() | |
if custom_encoder is not None: | |
self.encoder = custom_encoder | |
else: | |
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation) | |
encoder_norm = LayerNorm(d_model) | |
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
if custom_decoder is not None: | |
self.decoder = custom_decoder | |
else: | |
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation) | |
decoder_norm = LayerNorm(d_model) | |
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) | |
self._reset_parameters() | |
self.d_model = d_model | |
self.nhead = nhead | |
def forward(self, src, tgt, src_mask=None, tgt_mask=None, | |
memory_mask=None, src_key_padding_mask=None, | |
tgt_key_padding_mask=None, memory_key_padding_mask=None): | |
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa | |
r"""Take in and process masked source/target sequences. | |
Args: | |
src: the sequence to the encoder (required). | |
tgt: the sequence to the decoder (required). | |
src_mask: the additive mask for the src sequence (optional). | |
tgt_mask: the additive mask for the tgt sequence (optional). | |
memory_mask: the additive mask for the encoder output (optional). | |
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional). | |
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional). | |
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional). | |
Shape: | |
- src: :math:`(S, N, E)`. | |
- tgt: :math:`(T, N, E)`. | |
- src_mask: :math:`(S, S)`. | |
- tgt_mask: :math:`(T, T)`. | |
- memory_mask: :math:`(T, S)`. | |
- src_key_padding_mask: :math:`(N, S)`. | |
- tgt_key_padding_mask: :math:`(N, T)`. | |
- memory_key_padding_mask: :math:`(N, S)`. | |
Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked | |
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend | |
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` | |
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by | |
the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero | |
positions will be unchanged. If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- output: :math:`(T, N, E)`. | |
Note: Due to the multi-head attention architecture in the transformer model, | |
the output sequence length of a transformer is same as the input sequence | |
(i.e. target) length of the decode. | |
where S is the source sequence length, T is the target sequence length, N is the | |
batch size, E is the feature number | |
Examples: | |
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) | |
""" | |
if src.size(1) != tgt.size(1): | |
raise RuntimeError("the batch number of src and tgt must be equal") | |
if src.size(2) != self.d_model or tgt.size(2) != self.d_model: | |
raise RuntimeError("the feature number of src and tgt must be equal to d_model") | |
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask) | |
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask) | |
return output | |
def generate_square_subsequent_mask(self, sz): | |
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). | |
Unmasked positions are filled with float(0.0). | |
""" | |
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) | |
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
return mask | |
def _reset_parameters(self): | |
r"""Initiate parameters in the transformer model.""" | |
for p in self.parameters(): | |
if p.dim() > 1: | |
xavier_uniform_(p) | |
class TransformerEncoder(Module): | |
r"""TransformerEncoder is a stack of N encoder layers | |
Args: | |
encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
num_layers: the number of sub-encoder-layers in the encoder (required). | |
norm: the layer normalization component (optional). | |
Examples:: | |
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) | |
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) | |
>>> src = torch.rand(10, 32, 512) | |
>>> out = transformer_encoder(src) | |
""" | |
__constants__ = ['norm'] | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, mask=None, src_key_padding_mask=None): | |
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor | |
r"""Pass the input through the encoder layers in turn. | |
Args: | |
src: the sequence to the encoder (required). | |
mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
output = src | |
for i, mod in enumerate(self.layers): | |
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(Module): | |
r"""TransformerDecoder is a stack of N decoder layers | |
Args: | |
decoder_layer: an instance of the TransformerDecoderLayer() class (required). | |
num_layers: the number of sub-decoder-layers in the decoder (required). | |
norm: the layer normalization component (optional). | |
Examples:: | |
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) | |
>>> memory = torch.rand(10, 32, 512) | |
>>> tgt = torch.rand(20, 32, 512) | |
>>> out = transformer_decoder(tgt, memory) | |
""" | |
__constants__ = ['norm'] | |
def __init__(self, decoder_layer, num_layers, norm=None): | |
super(TransformerDecoder, self).__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, tgt, memory, memory2=None, tgt_mask=None, | |
memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None, | |
memory_key_padding_mask=None, memory_key_padding_mask2=None): | |
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor | |
r"""Pass the inputs (and mask) through the decoder layer in turn. | |
Args: | |
tgt: the sequence to the decoder (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
output = tgt | |
for mod in self.layers: | |
output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask, | |
memory_mask=memory_mask, memory_mask2=memory_mask2, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
memory_key_padding_mask2=memory_key_padding_mask2) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerEncoderLayer(Module): | |
r"""TransformerEncoderLayer is made up of self-attn and feedforward network. | |
This standard encoder layer is based on the paper "Attention Is All You Need". | |
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, | |
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in | |
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement | |
in a different way during application. | |
Args: | |
d_model: the number of expected features in the input (required). | |
nhead: the number of heads in the multiheadattention models (required). | |
dim_feedforward: the dimension of the feedforward network model (default=2048). | |
dropout: the dropout value (default=0.1). | |
activation: the activation function of intermediate layer, relu or gelu (default=relu). | |
Examples:: | |
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) | |
>>> src = torch.rand(10, 32, 512) | |
>>> out = encoder_layer(src) | |
""" | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", debug=False): | |
super(TransformerEncoderLayer, self).__init__() | |
self.debug = debug | |
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = Linear(d_model, dim_feedforward) | |
self.dropout = Dropout(dropout) | |
self.linear2 = Linear(dim_feedforward, d_model) | |
self.norm1 = LayerNorm(d_model) | |
self.norm2 = LayerNorm(d_model) | |
self.dropout1 = Dropout(dropout) | |
self.dropout2 = Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
def __setstate__(self, state): | |
if 'activation' not in state: | |
state['activation'] = F.relu | |
super(TransformerEncoderLayer, self).__setstate__(state) | |
def forward(self, src, src_mask=None, src_key_padding_mask=None): | |
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor | |
r"""Pass the input through the encoder layer. | |
Args: | |
src: the sequence to the encoder layer (required). | |
src_mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask) | |
if self.debug: self.attn = attn | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
class TransformerDecoderLayer(Module): | |
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. | |
This standard decoder layer is based on the paper "Attention Is All You Need". | |
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, | |
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in | |
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement | |
in a different way during application. | |
Args: | |
d_model: the number of expected features in the input (required). | |
nhead: the number of heads in the multiheadattention models (required). | |
dim_feedforward: the dimension of the feedforward network model (default=2048). | |
dropout: the dropout value (default=0.1). | |
activation: the activation function of intermediate layer, relu or gelu (default=relu). | |
Examples:: | |
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
>>> memory = torch.rand(10, 32, 512) | |
>>> tgt = torch.rand(20, 32, 512) | |
>>> out = decoder_layer(tgt, memory) | |
""" | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", self_attn=True, siamese=False, debug=False): | |
super(TransformerDecoderLayer, self).__init__() | |
self.has_self_attn, self.siamese = self_attn, siamese | |
self.debug = debug | |
if self.has_self_attn: | |
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm1 = LayerNorm(d_model) | |
self.dropout1 = Dropout(dropout) | |
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = Linear(d_model, dim_feedforward) | |
self.dropout = Dropout(dropout) | |
self.linear2 = Linear(dim_feedforward, d_model) | |
self.norm2 = LayerNorm(d_model) | |
self.norm3 = LayerNorm(d_model) | |
self.dropout2 = Dropout(dropout) | |
self.dropout3 = Dropout(dropout) | |
if self.siamese: | |
self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.activation = _get_activation_fn(activation) | |
def __setstate__(self, state): | |
if 'activation' not in state: | |
state['activation'] = F.relu | |
super(TransformerDecoderLayer, self).__setstate__(state) | |
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, | |
tgt_key_padding_mask=None, memory_key_padding_mask=None, | |
memory2=None, memory_mask2=None, memory_key_padding_mask2=None): | |
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor | |
r"""Pass the inputs (and mask) through the decoder layer. | |
Args: | |
tgt: the sequence to the decoder layer (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
if self.has_self_attn: | |
tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask) | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
if self.debug: self.attn = attn | |
tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
if self.debug: self.attn2 = attn2 | |
if self.siamese: | |
tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2, | |
key_padding_mask=memory_key_padding_mask2) | |
tgt = tgt + self.dropout2(tgt3) | |
if self.debug: self.attn3 = attn3 | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def _get_clones(module, N): | |
return ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation): | |
if activation == "relu": | |
return F.relu | |
elif activation == "gelu": | |
return F.gelu | |
raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) | |
class PositionalEncoding(nn.Module): | |
r"""Inject some information about the relative or absolute position of the tokens | |
in the sequence. The positional encodings have the same dimension as | |
the embeddings, so that the two can be summed. Here, we use sine and cosine | |
functions of different frequencies. | |
.. math:: | |
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) | |
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) | |
\text{where pos is the word position and i is the embed idx) | |
Args: | |
d_model: the embed dim (required). | |
dropout: the dropout value (default=0.1). | |
max_len: the max. length of the incoming sequence (default=5000). | |
Examples: | |
>>> pos_encoder = PositionalEncoding(d_model) | |
""" | |
def __init__(self, d_model, dropout=0.1, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0).transpose(0, 1) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
r"""Inputs of forward function | |
Args: | |
x: the sequence fed to the positional encoder model (required). | |
Shape: | |
x: [sequence length, batch size, embed dim] | |
output: [sequence length, batch size, embed dim] | |
Examples: | |
>>> output = pos_encoder(x) | |
""" | |
x = x + self.pe[:x.size(0), :] | |
return self.dropout(x) | |
if __name__ == '__main__': | |
transformer_model = Transformer(nhead=16, num_encoder_layers=12) | |
src = torch.rand((10, 32, 512)) | |
tgt = torch.rand((20, 32, 512)) | |
out = transformer_model(src, tgt) | |
print(out) | |