|
from smolagents import Tool |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from PIL import Image |
|
import torch |
|
|
|
class CaptionImageTool(Tool): |
|
name = "caption_image_tool" |
|
description = "Caption an image using a free Hugging Face template." |
|
inputs = { |
|
"image_path": { |
|
"type": "string", |
|
"description": "The path of the local image file to elaborate" |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.model = "Salesforce/blip-image-captioning-base" |
|
self.processor = BlipProcessor.from_pretrained(self.model) |
|
self.model = BlipForConditionalGeneration.from_pretrained(self.model).to(self.device) |
|
|
|
def forward(self, image_path: str) -> str: |
|
try: |
|
image = Image.open(image_path).convert('RGB') |
|
inputs = self.processor(image, return_tensors="pt").to(self.device) |
|
out = self.model.generate(**inputs) |
|
caption = self.processor.decode(out[0], skip_special_tokens=True) |
|
return "Image caption: " + caption |
|
except Exception as e: |
|
return f"Error caption_image is not working properly, error: {e}, please skip this tool" |