Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import requests | |
import os | |
from together import Together | |
import base64 | |
from threading import Thread | |
import time | |
# Initialize Together client | |
client = None | |
def initialize_client(api_key=None): | |
global client | |
if api_key: | |
client = Together(api_key=api_key) | |
elif "TOGETHER_API_KEY" in os.environ: | |
client = Together() | |
else: | |
raise ValueError("Please provide an API key or set the TOGETHER_API_KEY environment variable") | |
def encode_image(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def bot_streaming(message, history, max_new_tokens=250, api_key=None): | |
if client is None: | |
initialize_client(api_key) | |
txt = message["text"] | |
messages = [] | |
images = [] | |
for i, msg in enumerate(history): | |
if isinstance(msg[0], tuple): | |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(msg[0][0])}"}}]}) | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) | |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): | |
pass | |
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): | |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) | |
if len(message["files"]) == 1: | |
if isinstance(message["files"][0], str): # examples | |
image_path = message["files"][0] | |
else: # regular input | |
image_path = message["files"][0]["path"] | |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image_path)}"}}]}) | |
else: | |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) | |
stream = client.chat.completions.create( | |
model="meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo", | |
messages=messages, | |
max_tokens=max_new_tokens, | |
stream=True, | |
) | |
buffer = "" | |
for chunk in stream: | |
if chunk.choices[0].delta.content is not None: | |
buffer += chunk.choices[0].delta.content | |
time.sleep(0.01) | |
yield buffer | |
demo = gr.ChatInterface( | |
fn=bot_streaming, | |
title="Meta Llama-3.2-90B-Vision-Instruct-Turbo", | |
textbox=gr.MultimodalTextbox(), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=10, | |
maximum=500, | |
value=250, | |
step=10, | |
label="Maximum number of new tokens to generate", | |
), | |
gr.Textbox( | |
label="Together API Key (optional)", | |
placeholder="Enter your API key here. (optional)", | |
) | |
], | |
cache_examples=False, | |
description="Try Multimodal Llama by Meta with the Together API in this demo. Upload an image, and start chatting about it. You can provide your own API key or use the default one.", | |
stop_btn="Stop Generation", | |
fill_height=True, | |
multimodal=True | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |