Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from functools import partial | |
import clip | |
from einops import rearrange, repeat | |
from transformers import CLIPTokenizer, CLIPTextModel | |
import kornia | |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test | |
def _expand_mask(mask, dtype, tgt_len = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
def _build_causal_attention_mask(bsz, seq_len, dtype): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) | |
mask.fill_(torch.tensor(torch.finfo(dtype).min)) | |
mask.triu_(1) # zero out the lower diagonal | |
mask = mask.unsqueeze(1) # expand mask | |
return mask | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
c = self.embedding(c) | |
return c | |
class TransformerEmbedder(AbstractEncoder): | |
"""Some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): | |
super().__init__() | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer)) | |
def forward(self, tokens): | |
tokens = tokens.to(self.device) # meh | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, x): | |
return self(x) | |
class BERTTokenizer(AbstractEncoder): | |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" | |
def __init__(self, device="cuda", vq_interface=True, max_length=77): | |
super().__init__() | |
from transformers import BertTokenizerFast # TODO: add to reuquirements | |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
self.device = device | |
self.vq_interface = vq_interface | |
self.max_length = max_length | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
return tokens | |
def encode(self, text): | |
tokens = self(text) | |
if not self.vq_interface: | |
return tokens | |
return None, None, [None, None, tokens] | |
def decode(self, text): | |
return text | |
class BERTEmbedder(AbstractEncoder): | |
"""Uses the BERT tokenizr model and add some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, | |
device="cuda",use_tokenizer=True, embedding_dropout=0.0): | |
super().__init__() | |
self.use_tknz_fn = use_tokenizer | |
if self.use_tknz_fn: | |
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer), | |
emb_dropout=embedding_dropout) | |
def forward(self, text, embedding_manager=None): | |
if self.use_tknz_fn: | |
tokens = self.tknz_fn(text)#.to(self.device) | |
else: | |
tokens = text | |
z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager) | |
return z | |
def encode(self, text, **kwargs): | |
# output of length 77 | |
return self(text, **kwargs) | |
class SpatialRescaler(nn.Module): | |
def __init__(self, | |
n_stages=1, | |
method='bilinear', | |
multiplier=0.5, | |
in_channels=3, | |
out_channels=None, | |
bias=False): | |
super().__init__() | |
self.n_stages = n_stages | |
assert self.n_stages >= 0 | |
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] | |
self.multiplier = multiplier | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) | |
self.remap_output = out_channels is not None | |
if self.remap_output: | |
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') | |
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) | |
def forward(self,x): | |
for stage in range(self.n_stages): | |
x = self.interpolator(x, scale_factor=self.multiplier) | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from Hugging Face)""" | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
def embedding_forward( | |
self, | |
input_ids = None, | |
position_ids = None, | |
inputs_embeds = None, | |
embedding_manager = None, | |
) -> torch.Tensor: | |
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if inputs_embeds is None: | |
inputs_embeds = self.token_embedding(input_ids) | |
if embedding_manager is not None: | |
inputs_embeds = embedding_manager(input_ids, inputs_embeds) | |
position_embeddings = self.position_embedding(position_ids) | |
embeddings = inputs_embeds + position_embeddings | |
return embeddings | |
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings) | |
def encoder_forward( | |
self, | |
inputs_embeds, | |
attention_mask = None, | |
causal_attention_mask = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
return hidden_states | |
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder) | |
def text_encoder_forward( | |
self, | |
input_ids = None, | |
attention_mask = None, | |
position_ids = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
embedding_manager = None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify either input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager) | |
bsz, seq_len = input_shape | |
# CLIP's text model uses causal mask, prepare it here. | |
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to( | |
hidden_states.device | |
) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, hidden_states.dtype) | |
last_hidden_state = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
return last_hidden_state | |
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model) | |
def transformer_forward( | |
self, | |
input_ids = None, | |
attention_mask = None, | |
position_ids = None, | |
output_attentions = None, | |
output_hidden_states = None, | |
return_dict = None, | |
embedding_manager = None, | |
): | |
return self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
embedding_manager = embedding_manager | |
) | |
self.transformer.forward = transformer_forward.__get__(self.transformer) | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text, **kwargs): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
z = self.transformer(input_ids=tokens, **kwargs) | |
return z | |
def encode(self, text, **kwargs): | |
return self(text, **kwargs) | |
class FrozenCLIPTextEmbedder(nn.Module): | |
""" | |
Uses the CLIP transformer encoder for text. | |
""" | |
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): | |
super().__init__() | |
self.model, _ = clip.load(version, jit=False, device="cpu") | |
self.device = device | |
self.max_length = max_length | |
self.n_repeat = n_repeat | |
self.normalize = normalize | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = clip.tokenize(text).to(self.device) | |
z = self.model.encode_text(tokens) | |
if self.normalize: | |
z = z / torch.linalg.norm(z, dim=1, keepdim=True) | |
return z | |
def encode(self, text): | |
z = self(text) | |
if z.ndim==2: | |
z = z[:, None, :] | |
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) | |
return z | |
class FrozenClipImageEmbedder(nn.Module): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__( | |
self, | |
model, | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=False, | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device=device, jit=jit) | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic',align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x): | |
# x is assumed to be in range [-1,1] | |
return self.model.encode_image(self.preprocess(x)) | |
if __name__ == "__main__": | |
from ldm.util import count_params | |
model = FrozenCLIPEmbedder() | |
count_params(model, verbose=True) |