Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True) | |
# or any of these variants | |
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True) | |
# model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True) | |
model.eval() | |
# file name | |
filename = './data/icecream_2.png' | |
# sample execution (requires torchvision) | |
from PIL import Image | |
from torchvision import transforms | |
input_image = Image.open(filename) | |
input_image = input_image.convert("RGB") | |
preprocess = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(input_image) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch)['out'][0] | |
output_predictions = output.argmax(0) | |
# create a color pallette, selecting a color for each class | |
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) | |
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette | |
colors = (colors % 255).numpy().astype("uint8") | |
# plot the semantic segmentation predictions of 21 classes in each color | |
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size) | |
r.putpalette(colors) | |
r.save('results.png') | |
import matplotlib.pyplot as plt | |
plt.imshow(r) | |
# plt.show() |