the-neural-networker's picture
first commit
eca77db
import torch
from torch import nn
import torch.nn.functional as F
class ContentLoss(nn.Module):
"""
Content Loss for the neural style transfer algorithm.
"""
def __init__(self, target: torch.Tensor, device: torch.device) -> None:
super(ContentLoss, self).__init__()
batch_size, channels, height, width = target.size()
target = target.view(batch_size * channels, height * width)
self.target = target.detach().to(device)
def __str__(self) -> str:
return "Content loss"
def forward(self, input: torch.Tensor) -> torch.Tensor:
batch_size, channels, height, width = input.size()
input = input.view(batch_size * channels, height * width)
return F.mse_loss(input, self.target)
class StyleLoss(nn.Module):
"""
Style loss for the neural style transfer algorithm.
"""
def __init__(self, target: torch.Tensor, device: torch.device) -> None:
super(StyleLoss, self).__init__()
self.target = self.compute_gram_matrix(target).detach().to(device)
def __str__(self) -> str:
return "Style loss"
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = self.compute_gram_matrix(input)
return F.mse_loss(input, self.target)
def compute_gram_matrix(self, input: torch.Tensor) -> torch.Tensor:
batch_size, channels, height, width = input.size()
input = input.view(batch_size * channels, height * width)
return torch.matmul(input, input.T).div(batch_size * channels * height * width)