DepthCrafter / README.md
wbhu-tc's picture
Update README.md
85331ff unverified
|
raw
history blame
5.92 kB
## ___***DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos***___
<div align="center">
<img src='https://depthcrafter.github.io/img/logo.png' style="height:140px"></img>
<a href='https://arxiv.org/abs/2409.02095'><img src='https://img.shields.io/badge/arXiv-2409.02095-b31b1b.svg'></a> &nbsp;
<a href='https://depthcrafter.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> &nbsp;
<a href='https://huggingface.co/spaces/tencent/DepthCrafter'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a> &nbsp;
_**[Wenbo Hu<sup>1* &dagger;</sup>](https://wbhu.github.io),
[Xiangjun Gao<sup>2*</sup>](https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en),
[Xiaoyu Li<sup>1* &dagger;</sup>](https://xiaoyu258.github.io),
[Sijie Zhao<sup>1</sup>](https://scholar.google.com/citations?user=tZ3dS3MAAAAJ&hl=en),
[Xiaodong Cun<sup>1</sup>](https://vinthony.github.io/academic), <br>
[Yong Zhang<sup>1</sup>](https://yzhang2016.github.io),
[Long Quan<sup>2</sup>](https://home.cse.ust.hk/~quan),
[Ying Shan<sup>3, 1</sup>](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)**_
<br><br>
<sup>1</sup>Tencent AI Lab
<sup>2</sup>The Hong Kong University of Science and Technology
<sup>3</sup>ARC Lab, Tencent PCG
arXiv preprint, 2024
</div>
## πŸ”† Introduction
- `[24-10-19]` πŸ€—πŸ€—πŸ€— DepthCrafter now has been integrated into [ComfyUI](https://github.com/akatz-ai/ComfyUI-DepthCrafter-Nodes)!
- `[24-10-08]` πŸ€—πŸ€—πŸ€— DepthCrafter now has been integrated into [Nuke](https://github.com/Theo-SAMINADIN-td/NukeDepthCrafter), have a try!
- `[24-09-28]` Add full dataset inference and evaluation scripts for better comparison use. :-)
- `[24-09-25]` πŸ€—πŸ€—πŸ€— Add huggingface online demo [DepthCrafter](https://huggingface.co/spaces/tencent/DepthCrafter).
- `[24-09-19]` Add scripts for preparing benchmark datasets.
- `[24-09-18]` Add point cloud sequence visualization.
- `[24-09-14]` πŸ”₯πŸ”₯πŸ”₯ **DepthCrafter** is released now, have fun!
πŸ”₯ DepthCrafter can generate temporally consistent long-depth sequences with fine-grained details for open-world videos,
without requiring additional information such as camera poses or optical flow.
πŸ€— If you find DepthCrafter useful, **please help ⭐ this repo**, which is important to Open-Source projects. Thanks!
## πŸŽ₯ Visualization
We provide demos of unprojected point cloud sequences, with reference RGB and estimated depth videos.
Please refer to our [project page](https://depthcrafter.github.io) for more details.
https://github.com/user-attachments/assets/62141cc8-04d0-458f-9558-fe50bc04cc21
## πŸš€ Quick Start
### πŸ€– Gradio Demo
- Online demo: [DepthCrafter](https://huggingface.co/spaces/tencent/DepthCrafter)
- Local demo:
```bash
gradio app.py
```
### 🌟 Community Support
- [NukeDepthCrafter](https://github.com/Theo-SAMINADIN-td/NukeDepthCrafter):
a plugin allows you to generate temporally consistent Depth sequences inside Nuke,
which is widely used in the VFX industry.
- [ComfyUI-Nodes](https://github.com/akatz-ai/ComfyUI-DepthCrafter-Nodes): creating consistent depth maps for your videos using DepthCrafter in ComfyUI.
### πŸ› οΈ Installation
1. Clone this repo:
```bash
git clone https://github.com/Tencent/DepthCrafter.git
```
2. Install dependencies (please refer to [requirements.txt](requirements.txt)):
```bash
pip install -r requirements.txt
```
### πŸ€— Model Zoo
[DepthCrafter](https://huggingface.co/tencent/DepthCrafter) is available in the Hugging Face Model Hub.
### πŸƒβ€β™‚οΈ Inference
#### 1. High-resolution inference, requires a GPU with ~26GB memory for 1024x576 resolution:
- Full inference (~0.6 fps on A100, recommended for high-quality results):
```bash
python run.py --video-path examples/example_01.mp4
```
- Fast inference through 4-step denoising and without classifier-free guidance (~2.3 fps on A100οΌ‰:
```bash
python run.py --video-path examples/example_01.mp4 --num-inference-steps 4 --guidance-scale 1.0
```
#### 2. Low-resolution inference requires a GPU with ~9GB memory for 512x256 resolution:
- Full inference (~2.3 fps on A100):
```bash
python run.py --video-path examples/example_01.mp4 --max-res 512
```
- Fast inference through 4-step denoising and without classifier-free guidance (~9.4 fps on A100):
```bash
python run.py --video-path examples/example_01.mp4 --max-res 512 --num-inference-steps 4 --guidance-scale 1.0
```
## πŸš€ Dataset Evaluation
Please check the `benchmark` folder.
- To create the dataset we use in the paper, you need to run `dataset_extract/dataset_extract_${dataset_name}.py`.
- Then you will get the `csv` files that save the relative root of extracted RGB video and depth npz files. We also provide these csv files.
- Inference for all datasets scripts:
```bash
bash benchmark/infer/infer.sh
```
(Remember to replace the `input_rgb_root` and `saved_root` with your own path.)
- Evaluation for all datasets scripts:
```bash
bash benchmark/eval/eval.sh
```
(Remember to replace the `pred_disp_root` and `gt_disp_root` with your own path.)
####
## 🀝 Contributing
- Welcome to open issues and pull requests.
- Welcome to optimize the inference speed and memory usage, e.g., through model quantization, distillation, or other acceleration techniques.
## πŸ“œ Citation
If you find this work helpful, please consider citing:
```bibtex
@article{hu2024-DepthCrafter,
author = {Hu, Wenbo and Gao, Xiangjun and Li, Xiaoyu and Zhao, Sijie and Cun, Xiaodong and Zhang, Yong and Quan, Long and Shan, Ying},
title = {DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos},
journal = {arXiv preprint arXiv:2409.02095},
year = {2024}
}
```