Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import gradio as gr | |
from pathlib import Path | |
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel | |
# Pattern to ignore all the text after 2 or more full stops | |
regex_pattern = "[.]{2,}" | |
#sample = val_dataset[800] | |
#model = model.cuda() | |
#print(tokenizer.decode(model.generate(sample['pixel_values'].unsqueeze(0).cuda())[0]).replace('<|endoftext|>', '').split('\n')[0],'\n\n\n') | |
def post_process(text): | |
try: | |
text = text.strip() | |
text = re.split(regex_pattern, text)[0] | |
except Exception as e: | |
print(e) | |
pass | |
return text | |
def predict(image, max_length=64, num_beams=4): | |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
with torch.no_grad(): | |
text = model.generate(pixel_values.unsqueeze(0).cpu()) | |
text = tokenizer.decode(text.replace('<|endoftext|>', '').split('\n')[0],'\n\n\n') | |
# output_ids = model.generate( | |
# pixel_values, | |
# max_length=max_length, | |
# num_beams=num_beams, | |
# return_dict_in_generate=True, | |
#).sequences | |
#preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
#pred = post_process(preds[0]) | |
return text | |
model_path = "team-indain-image-caption/hindi-image-captioning" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu") | |
# Load model. | |
model = VisionEncoderDecoderModel.from_pretrained(model_path) | |
model.to(device) | |
print("Loaded model") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
print("Loaded feature_extractor") | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
#if model.decoder.name_or_path == "gpt2": | |
# tokenizer.pad_token = tokenizer.bos_token | |
print("Loaded tokenizer") | |
title = "Hindi Image Captioning" | |
description = "" | |
input = gr.inputs.Image(type="pil") | |
#example_images = sorted([f.as_posix() for f in Path("examples").glob("*.jpg")]) | |
#print(f"Loaded {len(example_images)} example images") | |
interface = gr.Interface( | |
fn=predict, | |
inputs=input, | |
outputs="textbox", | |
title=title, | |
description=description, | |
#examples=example_images, | |
live=True, | |
) | |
interface.launch() | |