山越貴耀
stop caching
568fadb
raw
history blame
13.1 kB
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import cv2
import io
def load_sentence_model():
sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
return sentence_model
@st.cache(show_spinner=False)
def load_model(model_name):
if model_name.startswith('bert'):
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
model.eval()
return tokenizer,model
@st.cache(show_spinner=False)
def load_data(sentence_num):
df = pd.read_csv('tsne_out.csv')
df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
return df
#@st.cache(show_spinner=False)
def mask_prob(model,mask_id,sentences,position,temp=1):
masked_sentences = sentences.clone()
masked_sentences[:, position] = mask_id
with torch.no_grad():
logits = model(masked_sentences)[0]
return F.log_softmax(logits[:, position] / temp, dim = -1)
#@st.cache(show_spinner=False)
def sample_words(probs,pos,sentences):
candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
for candidate in torch.argsort(probs[0],descending=True)[:10]]
df = pd.DataFrame(data=candidates,columns=['word','prob'])
chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
new_sentences = sentences.clone()
new_sentences[:, pos] = chosen_words
return new_sentences, df
def run_chains(tokenizer,model,mask_id,input_text,num_steps):
init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
seq_len = init_sent.shape[1]
sentence = init_sent.clone()
data_list = []
st.sidebar.write('Generating samples...')
st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
chain_progress = st.sidebar.progress(0)
for step_id in range(num_steps):
chain_progress.progress((step_id+1)/num_steps)
pos = torch.randint(seq_len-2,size=(1,)).item()+1
data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
probs = mask_prob(model,mask_id,sentence,pos)
sentence,_ = sample_words(probs,pos,sentence)
return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])
#@st.cache(suppress_st_warning=True,show_spinner=False)
def run_tsne(chain):
st.sidebar.write('Running t-SNE...')
st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
sentence_model = load_sentence_model()
sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)
tsne = TSNE(n_components = 2, n_iter=2000)
big_pca = PCA(n_components = 50)
tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
return tsne
def clear_df():
del st.session_state['df']
#@st.cache(show_spinner=False)
def plot_fig(df,sent_id,xlims,ylims,color_list):
x_tsne, y_tsne = df.x_tsne, df.y_tsne
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
ax.set_title(df.cleaned_sentence.to_list()[sent_id])
#fig.savefig(f'figures/{sent_id}.png')
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=200)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
plt.clf()
plt.close()
return img
def pre_render_images(df,input_sent_id):
sent_id_options = [min(len(df)-1,max(0,input_sent_id+increment)) for increment in [-500,-100,-10,-1,0,1,10,100,500]]
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xscale_unit = (max(x_tsne)-min(x_tsne))/10
yscale_unit = (max(y_tsne)-min(y_tsne))/10
xmax,xmin = (max(x_tsne)//xscale_unit+1)*xscale_unit,(min(x_tsne)//xscale_unit-1)*xscale_unit
ymax,ymin = (max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
sent_list = []
fig_list = []
fig_production = st.progress(0)
for fig_id,sent_id in enumerate(sent_id_options):
fig_production.progress(fig_id+1)
img = plot_fig(df,sent_id,[xmin,xmax],[ymin,ymax],color_list)
sent_list.append(df.cleaned_sentence.to_list()[sent_id])
fig_list.append(img)
return sent_list,fig_list
if __name__=='__main__':
# Config
max_width = 1500
padding_top = 0
padding_right = 2
padding_bottom = 0
padding_left = 2
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
# Title
st.header("Demo: Probing BERT's priors with serial reproduction chains")
st.text("Explore sentences in the serial reproduction chains generated by BERT!")
st.text("Visit different positions in the chain using the widgets on the left.")
st.text("Check 'Show candidates' to see what words are proposed when each word is masked out.")
# Load BERT
tokenizer,model = load_model('bert-base-uncased')
mask_id = tokenizer.encode("[MASK]")[1:-1][0]
# First step: load the dataframe containing sentences
input_type = st.sidebar.radio(label='1. Choose the input type',options=('Use one of the example sentences','Use your own initial sentence'))
if input_type=='Use one of the example sentences':
sentence = st.sidebar.selectbox("Select the inital sentence",
('About 170 campers attend the camps each week.',
'She grew up with three brothers and ten sisters.'))
if sentence=='About 170 campers attend the camps each week.':
sentence_num = 6
else:
sentence_num = 8
st.session_state.df = load_data(sentence_num)
else:
sentence = st.sidebar.text_input('Type down your own sentence here.',on_change=clear_df)
num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=1000)
if st.sidebar.button('Run chains'):
chain = run_chains(tokenizer,model,mask_id,sentence,num_steps=num_steps)
st.session_state.df = run_tsne(chain)
st.session_state.finished_sampling = True
if 'df' in st.session_state:
df = st.session_state.df
sent_id = st.sidebar.slider(label='2. Select a position in the chain to start exploring',
min_value=0,max_value=len(df)-1,value=0)
if input_type=='Use one of the example sentences':
explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step','Autoplay'])
else:
explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step'])
if explore_type=='Autoplay':
#if st.button('Create the video (this may take a few minutes)'):
#st.write('Creating the video...')
#x_tsne, y_tsne = df.x_tsne, df.y_tsne
#xscale_unit = (max(x_tsne)-min(x_tsne))/10
#yscale_unit = (max(y_tsne)-min(y_tsne))/10
#xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
#ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
#color_list = sns.color_palette('flare',n_colors=1200)
#fig_production = st.progress(0)
#img = plot_fig(df,0,xlims,ylims,color_list)
#img = cv2.imread('figures/0.png')
#height, width, layers = img.shape
#size = (width,height)
#out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
#for sent_id in range(1000):
# fig_production.progress((sent_id+1)/1000)
# img = plot_fig(df,sent_id,xlims,ylims,color_list)
#img = cv2.imread(f'figures/{sent_id}.png')
# out.write(img)
#out.release()
cols = st.columns([1,2,1])
with cols[1]:
with open(f'sampling_video_{sentence_num}.mp4', 'rb') as f:
st.video(f)
else:
if explore_type=='In fixed increments':
button_labels = ['-500','-100','-10','-1','0','+1','+10','+100','+500']
increment = st.sidebar.radio(label='select increment',options=button_labels,index=4)
sent_id += int(increment.replace('+',''))
sent_id = min(len(df)-1,max(0,sent_id))
elif explore_type=='Click through each step':
sent_id = st.sidebar.number_input(label='step number',value=sent_id)
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xscale_unit = (max(x_tsne)-min(x_tsne))/10
yscale_unit = (max(y_tsne)-min(y_tsne))/10
xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
sentence = df.cleaned_sentence.to_list()[sent_id]
input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
show_candidates = st.checkbox('Show candidates')
if show_candidates:
st.write('Click any word to see each candidate with its probability')
cols = st.columns(len(decoded_sent))
with cols[0]:
st.write(decoded_sent[0])
with cols[-1]:
st.write(decoded_sent[-1])
for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
with col:
if st.button(word):
probs = mask_prob(model,mask_id,input_sent,word_id+1)
_,candidates_df = sample_words(probs, word_id+1, input_sent)
st.table(candidates_df)
else:
disp_style = '"font-family:san serif; color:Black; font-size: 25px; font-weight:bold"'
if explore_type=='Click through each step' and input_type=='Use your own initial sentence' and sent_id>0 and 'finished_sampling' in st.session_state:
sampled_loc = df.next_sample_loc.to_list()[sent_id-1]
disp_sent_before = f'<p style={disp_style}>'+' '.join(decoded_sent[1:sampled_loc])
new_word = f'<span style="color:Red">{decoded_sent[sampled_loc]}</span>'
disp_sent_after = ' '.join(decoded_sent[sampled_loc+1:-1])+'</p>'
st.markdown(disp_sent_before+' '+new_word+' '+disp_sent_after,unsafe_allow_html=True)
else:
st.markdown(f'<p style={disp_style}>{sentence}</p>',unsafe_allow_html=True)
cols = st.columns([1,2,1])
with cols[1]:
st.pyplot(fig)