Spaces:
Running
Running
import gradio as gr | |
from matplotlib import gridspec | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation | |
feature_extractor = SegformerFeatureExtractor.from_pretrained( | |
"jonathandinu/face-parsing" | |
) | |
model = TFSegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing") | |
def ade_palette(): | |
"""ADE20K palette that maps each class to RGB values.""" | |
return [ | |
[125, 237, 123], | |
[25, 97, 48], | |
[59, 11, 81], | |
[163, 123, 42], | |
[239, 41, 136], | |
[224, 4, 115], | |
[114, 84, 169], | |
[16, 137, 208], | |
[153, 91, 30], | |
[48, 90, 221], | |
[91, 245, 206], | |
[108, 87, 175], | |
[232, 181, 231], | |
[153, 70, 176], | |
[32, 25, 179], | |
[118, 177, 239], | |
[246, 75, 15], | |
[183, 17, 190], | |
[79, 235, 51], | |
] | |
labels_list = [] | |
with open(r"labels.txt", "r") as fp: | |
for line in fp: | |
labels_list.append(line[:-1]) | |
colormap = np.asarray(ade_palette()) | |
def label_to_color_image(label): | |
if label.ndim != 2: | |
raise ValueError("Expect 2-D input label") | |
if np.max(label) >= len(colormap): | |
raise ValueError("label value too large.") | |
return colormap[label] | |
def draw_plot(pred_img, seg): | |
fig = plt.figure(figsize=(20, 15)) | |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
plt.subplot(grid_spec[0]) | |
plt.imshow(pred_img) | |
plt.axis("off") | |
LABEL_NAMES = np.asarray(labels_list) | |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
unique_labels = np.unique(seg.numpy().astype("uint8")) | |
ax = plt.subplot(grid_spec[1]) | |
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
ax.yaxis.tick_right() | |
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
plt.xticks([], []) | |
ax.tick_params(width=0.0, labelsize=25) | |
return fig | |
def sepia(input_img): | |
input_img = Image.fromarray(input_img) | |
inputs = feature_extractor(images=input_img, return_tensors="tf") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
logits = tf.transpose(logits, [0, 2, 3, 1]) | |
logits = tf.image.resize( | |
logits, input_img.size[::-1] | |
) # We reverse the shape of `image` because `image.size` returns width and height. | |
seg = tf.math.argmax(logits, axis=-1)[0] | |
color_seg = np.zeros( | |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
) # height, width, 3 | |
for label, color in enumerate(colormap): | |
color_seg[seg.numpy() == label, :] = color | |
# Show image + mask | |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
pred_img = pred_img.astype(np.uint8) | |
fig = draw_plot(pred_img, seg) | |
return fig | |
demo = gr.Interface( | |
fn=sepia, | |
inputs=gr.Image(shape=(400, 600)), | |
outputs=["plot"], | |
examples=[ | |
"elon.jpg", | |
"biden.jpeg", | |
"bezos.jpeg", | |
"zuckerberg.jpeg", | |
], | |
allow_flagging="never", | |
) | |
demo.launch() | |