Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for NER inference. | |
""" | |
import sys | |
import os | |
import argparse | |
import json | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils.tokenizers import * | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts | |
from finetune.run_ner import NerTagger | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
text_a = line[columns["text_a"]] | |
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) | |
seg = [1] * len(src) | |
if len(src) > args.seq_length: | |
src = src[:args.seq_length] | |
seg = seg[:args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset.append([src, seg]) | |
return dataset | |
def batch_loader(batch_size, src, seg): | |
instances_num = src.size()[0] | |
for i in range(instances_num // batch_size): | |
src_batch = src[i * batch_size : (i + 1) * batch_size, :] | |
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] | |
yield src_batch, seg_batch | |
if instances_num > instances_num // batch_size * batch_size: | |
src_batch = src[instances_num // batch_size * batch_size :, :] | |
seg_batch = seg[instances_num // batch_size * batch_size :, :] | |
yield src_batch, seg_batch | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--vocab_path", default=None, type=str, | |
help="Path of the vocabulary file.") | |
parser.add_argument("--spm_model_path", default=None, type=str, | |
help="Path of the sentence piece model.") | |
parser.add_argument("--label2id_path", type=str, required=True, | |
help="Path of the label2id file.") | |
parser.add_argument("--crf_target", action="store_true", | |
help="Use CRF loss as the target function or not, default False.") | |
args = parser.parse_args() | |
# Load the hyperparameters of the config file. | |
args = load_hyperparam(args) | |
with open(args.label2id_path, mode="r", encoding="utf-8") as f: | |
l2i = json.load(f) | |
print("Labels: ", l2i) | |
l2i["[PAD]"] = len(l2i) | |
i2l = {} | |
for key, value in l2i.items(): | |
i2l[value] = key | |
args.l2i = l2i | |
args.labels_num = len(l2i) | |
# Load tokenizer. | |
args.tokenizer = SpaceTokenizer(args) | |
# Build sequence labeling model. | |
model = NerTagger(args) | |
model = load_model(model, args.load_model_path) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
instances = read_dataset(args, args.test_path) | |
src = torch.LongTensor([ins[0] for ins in instances]) | |
seg = torch.LongTensor([ins[1] for ins in instances]) | |
instances_num = src.size(0) | |
batch_size = args.batch_size | |
print("The number of prediction instances: ", instances_num) | |
model.eval() | |
with open(args.prediction_path, mode="w", encoding="utf-8") as f: | |
f.write("pred_label" + "\n") | |
for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): | |
src_batch = src_batch.to(device) | |
seg_batch = seg_batch.to(device) | |
with torch.no_grad(): | |
_, pred = model(src_batch, None, seg_batch) | |
# Storing sequence length of instances in a batch. | |
seq_length_batch = [] | |
for seg in seg_batch.cpu().numpy().tolist(): | |
for j in range(len(seg) - 1, -1, -1): | |
if seg[j] != 0: | |
break | |
seq_length_batch.append(j+1) | |
pred = pred.cpu().numpy().tolist() | |
for j in range(0, len(pred), args.seq_length): | |
for label_id in pred[j: j + seq_length_batch[j // args.seq_length]]: | |
f.write(i2l[label_id] + " ") | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |