sylvielsstfr commited on
Commit
cd49c11
·
1 Parent(s): 7fdf645

put the original code

Browse files
Files changed (2) hide show
  1. app.py +66 -22
  2. app_bad.py +26 -0
app.py CHANGED
@@ -1,26 +1,70 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
-
4
- # Créer le générateur de texte avec un modèle public
5
- generator = pipeline("text-generation", model="gpt2")
6
-
7
- def respond(message, history):
8
- history = history or []
9
- # Ajouter le message utilisateur
10
- history.append({"role": "user", "content": message})
11
- # Générer une réponse
12
- answer = generator(message, max_length=50, do_sample=True)[0]["generated_text"]
13
- history.append({"role": "assistant", "content": answer})
14
- # Vider la textbox
15
- return "", history
16
-
17
- # Interface Gradio
18
- with gr.Blocks() as demo:
19
- chatbot = gr.Chatbot()
20
- msg = gr.Textbox(label="Message")
21
- msg.submit(respond, [msg, chatbot], [msg, chatbot])
 
 
22
 
23
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
 
26
- # import gradio as gr
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+
5
+ def respond(
6
+ message,
7
+ history: list[dict[str, str]],
8
+ system_message,
9
+ max_tokens,
10
+ temperature,
11
+ top_p,
12
+ hf_token: gr.OAuthToken,
13
+ ):
14
+ """
15
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
+ """
17
+ client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
+
19
+ messages = [{"role": "system", "content": system_message}]
20
+
21
+ messages.extend(history)
22
+
23
+ messages.append({"role": "user", "content": message})
24
 
25
+ response = ""
26
+
27
+ for message in client.chat_completion(
28
+ messages,
29
+ max_tokens=max_tokens,
30
+ stream=True,
31
+ temperature=temperature,
32
+ top_p=top_p,
33
+ ):
34
+ choices = message.choices
35
+ token = ""
36
+ if len(choices) and choices[0].delta.content:
37
+ token = choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ chatbot = gr.ChatInterface(
47
+ respond,
48
+ type="messages",
49
+ additional_inputs=[
50
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ gr.Slider(
54
+ minimum=0.1,
55
+ maximum=1.0,
56
+ value=0.95,
57
+ step=0.05,
58
+ label="Top-p (nucleus sampling)",
59
+ ),
60
+ ],
61
+ )
62
+
63
+ with gr.Blocks() as demo:
64
+ with gr.Sidebar():
65
+ gr.LoginButton()
66
+ chatbot.render()
67
 
68
 
69
+ if __name__ == "__main__":
70
+ demo.launch()
app_bad.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Créer le générateur de texte avec un modèle public
5
+ generator = pipeline("text-generation", model="gpt2")
6
+
7
+ def respond(message, history):
8
+ history = history or []
9
+ # Ajouter le message utilisateur
10
+ history.append({"role": "user", "content": message})
11
+ # Générer une réponse
12
+ answer = generator(message, max_length=50, do_sample=True)[0]["generated_text"]
13
+ history.append({"role": "assistant", "content": answer})
14
+ # Vider la textbox
15
+ return "", history
16
+
17
+ # Interface Gradio
18
+ with gr.Blocks() as demo:
19
+ chatbot = gr.Chatbot()
20
+ msg = gr.Textbox(label="Message")
21
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
22
+
23
+ demo.launch()
24
+
25
+
26
+ # import gradio as gr