sylvielsstfr commited on
Commit
7fdf645
·
1 Parent(s): cbc75ab

update appl

Browse files
Files changed (2) hide show
  1. app.py +22 -66
  2. requirements.txt +4 -0
app.py CHANGED
@@ -1,70 +1,26 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
  with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
 
 
67
 
68
 
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Créer le générateur de texte avec un modèle public
5
+ generator = pipeline("text-generation", model="gpt2")
6
+
7
+ def respond(message, history):
8
+ history = history or []
9
+ # Ajouter le message utilisateur
10
+ history.append({"role": "user", "content": message})
11
+ # Générer une réponse
12
+ answer = generator(message, max_length=50, do_sample=True)[0]["generated_text"]
13
+ history.append({"role": "assistant", "content": answer})
14
+ # Vider la textbox
15
+ return "", history
16
+
17
+ # Interface Gradio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  with gr.Blocks() as demo:
19
+ chatbot = gr.Chatbot()
20
+ msg = gr.Textbox(label="Message")
21
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
22
+
23
+ demo.launch()
24
 
25
 
26
+ # import gradio as gr
 
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio==6.2.0
2
+ transformers
3
+ torch
4
+