Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
# Load the model once | |
model = tf.keras.models.load_model("model/garbage_model.h5") | |
classes = ["Organic", "Recyclable", "Hazardous", "Metal", "Glass", "E-Waste"] | |
def predict_image(img): | |
if isinstance(img, Image.Image): | |
image = img.resize((150, 150)) | |
else: | |
image = Image.fromarray(img).resize((150, 150)) | |
arr = np.array(image) / 255.0 | |
arr = np.expand_dims(arr, axis=0) | |
preds = model.predict(arr) | |
idx = int(np.argmax(preds)) | |
return {classes[i]: float(preds[0][i]) for i in range(len(classes))} | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
title="♻️ Garbage Classifier", | |
description="Upload an image of garbage to classify it!", | |
) | |
if __name__ == "__main__": | |
interface.launch() | |