# app.py import gradio as gr import tensorflow as tf from PIL import Image import numpy as np # Load the model once model = tf.keras.models.load_model("model/garbage_model.h5") classes = ["Organic", "Recyclable", "Hazardous", "Metal", "Glass", "E-Waste"] def predict_image(img): if isinstance(img, Image.Image): image = img.resize((150, 150)) else: image = Image.fromarray(img).resize((150, 150)) arr = np.array(image) / 255.0 arr = np.expand_dims(arr, axis=0) preds = model.predict(arr) idx = int(np.argmax(preds)) return {classes[i]: float(preds[0][i]) for i in range(len(classes))} interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title="♻️ Garbage Classifier", description="Upload an image of garbage to classify it!", ) if __name__ == "__main__": interface.launch()