Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_chat import message | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import CTransformers | |
from langchain.llms import Replicate | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.document_loaders import TextLoader | |
from langchain.document_loaders import Docx2txtLoader | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
import os | |
from dotenv import load_dotenv | |
import tempfile | |
load_dotenv() | |
def initialize_session_state(): | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello! Ask me about your file"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Hey! π"] | |
def conversation_chat(query, chain, history): | |
result = chain({"question": query, "chat_history": history}) | |
history.append((query, result["answer"])) | |
return result["answer"] | |
def display_chat_history(chain): | |
reply_container = st.container() | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
with st.spinner('Generating response...'): | |
output = conversation_chat(user_input, chain, st.session_state['history']) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated']: | |
with reply_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") | |
def create_conversational_chain(vector_store): | |
load_dotenv() | |
# Create llm | |
#llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin", | |
#streaming=True, | |
#callbacks=[StreamingStdOutCallbackHandler()], | |
#model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01}) | |
llm = Replicate( | |
streaming = True, | |
model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", | |
callbacks=[StreamingStdOutCallbackHandler()], | |
input = {"temperature": 0.01, "max_length" :500,"top_p":1}) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', | |
retriever=vector_store.as_retriever(search_kwargs={"k": 2}), | |
memory=memory) | |
return chain | |
def main(): | |
load_dotenv() | |
initialize_session_state() | |
st.title("ChatBot ") | |
# Initialize Streamlit | |
st.sidebar.title("Document Processing") | |
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True) | |
if uploaded_files: | |
text = [] | |
for file in uploaded_files: | |
file_extension = os.path.splitext(file.name)[1] | |
with tempfile.NamedTemporaryFile(delete=False) as temp_file: | |
temp_file.write(file.read()) | |
temp_file_path = temp_file.name | |
loader = None | |
if file_extension == ".pdf": | |
loader = PyPDFLoader(temp_file_path) | |
elif file_extension == ".docx" or file_extension == ".doc": | |
loader = Docx2txtLoader(temp_file_path) | |
elif file_extension == ".txt": | |
loader = TextLoader(temp_file_path) | |
if loader: | |
text.extend(loader.load()) | |
os.remove(temp_file_path) | |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len) | |
text_chunks = text_splitter.split_documents(text) | |
# Create embeddings | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device': 'cpu'}) | |
# Create vector store | |
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings) | |
# Create the chain object | |
chain = create_conversational_chain(vector_store) | |
display_chat_history(chain) | |
if __name__ == "__main__": | |
main() | |