import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import CTransformers from langchain.llms import Replicate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.document_loaders import PyPDFLoader from langchain.document_loaders import TextLoader from langchain.document_loaders import Docx2txtLoader from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler import os from dotenv import load_dotenv import tempfile load_dotenv() def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me about your file"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! 👋"] def conversation_chat(query, chain, history): result = chain({"question": query, "chat_history": history}) history.append((query, result["answer"])) return result["answer"] def display_chat_history(chain): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: with st.spinner('Generating response...'): output = conversation_chat(user_input, chain, st.session_state['history']) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") def create_conversational_chain(vector_store): load_dotenv() # Create llm #llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin", #streaming=True, #callbacks=[StreamingStdOutCallbackHandler()], #model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01}) llm = Replicate( streaming = True, model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", callbacks=[StreamingStdOutCallbackHandler()], input = {"temperature": 0.01, "max_length" :500,"top_p":1}) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k": 2}), memory=memory) return chain def main(): load_dotenv() initialize_session_state() st.title("ChatBot ") # Initialize Streamlit st.sidebar.title("Document Processing") uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True) if uploaded_files: text = [] for file in uploaded_files: file_extension = os.path.splitext(file.name)[1] with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(file.read()) temp_file_path = temp_file.name loader = None if file_extension == ".pdf": loader = PyPDFLoader(temp_file_path) elif file_extension == ".docx" or file_extension == ".doc": loader = Docx2txtLoader(temp_file_path) elif file_extension == ".txt": loader = TextLoader(temp_file_path) if loader: text.extend(loader.load()) os.remove(temp_file_path) text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len) text_chunks = text_splitter.split_documents(text) # Create embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) # Create vector store vector_store = FAISS.from_documents(text_chunks, embedding=embeddings) # Create the chain object chain = create_conversational_chain(vector_store) display_chat_history(chain) if __name__ == "__main__": main()