Spaces:
Runtime error
Runtime error
"""Streamlit web app for depth of field detection""" | |
import time | |
from PIL import Image | |
import streamlit as st | |
from bokeh import app_dof_predict | |
from tempfile import NamedTemporaryFile | |
temp_file = NamedTemporaryFile(delete=False) | |
# Page layout | |
st.set_page_config(page_title="Depth of Field Detection", page_icon=":camera:", layout="wide") | |
# Sidebar options | |
st.sidebar.title("Prediction Settings") | |
st.sidebar.text("") | |
models = ["DenseNet (baseline)", "VGG16 (baseline)", "DenseNet (best)", "VGG16 (best)"] | |
model_choice = [] | |
st.sidebar.write("Choose a model for prediction") | |
model_choice.append(st.sidebar.radio("", models)) | |
with st.container(): | |
st.title("Depth of Field detection w/ Deep Learning") | |
st.image( | |
"https://source.unsplash.com/FABH5NJEMGM/960x640", | |
use_column_width="auto", | |
) | |
file = st.file_uploader("Upload an image", type=["jpg", "jpeg"]) | |
if file is not None: | |
img = Image.open(file) | |
temp_file.write(file.getvalue()) | |
st.image(img, caption="Uploaded image", use_column_width="auto") | |
if st.button("Predict"): | |
st.write("") | |
st.write("Working...") | |
start_time = time.time() | |
for choice in model_choice: | |
prediction = app_dof_predict(choice, temp_file.name) | |
print(prediction) | |
execute_bar = st.progress(0) | |
for percent_complete in range(100): | |
time.sleep(0.001) | |
execute_bar.progress(percent_complete + 1) | |
prob = prediction["probability"] | |
if prediction["class"] == 0: | |
st.header("Prediction: Bokeh - Confidence {:.1f}%".format(prob * 100)) | |
elif prediction["class"] == 1: | |
st.header("Prediction: No bokeh detected - Confidence {:.1f}%".format(prob * 100)) | |
st.write("Took {} seconds to run.".format(round(time.time() - start_time, 2))) | |