"""Streamlit web app for depth of field detection""" import time from PIL import Image import streamlit as st from bokeh import app_dof_predict from tempfile import NamedTemporaryFile temp_file = NamedTemporaryFile(delete=False) # Page layout st.set_page_config(page_title="Depth of Field Detection", page_icon=":camera:", layout="wide") # Sidebar options st.sidebar.title("Prediction Settings") st.sidebar.text("") models = ["DenseNet (baseline)", "VGG16 (baseline)", "DenseNet (best)", "VGG16 (best)"] model_choice = [] st.sidebar.write("Choose a model for prediction") model_choice.append(st.sidebar.radio("", models)) with st.container(): st.title("Depth of Field detection w/ Deep Learning") st.image( "https://source.unsplash.com/FABH5NJEMGM/960x640", use_column_width="auto", ) file = st.file_uploader("Upload an image", type=["jpg", "jpeg"]) if file is not None: img = Image.open(file) temp_file.write(file.getvalue()) st.image(img, caption="Uploaded image", use_column_width="auto") if st.button("Predict"): st.write("") st.write("Working...") start_time = time.time() for choice in model_choice: prediction = app_dof_predict(choice, temp_file.name) print(prediction) execute_bar = st.progress(0) for percent_complete in range(100): time.sleep(0.001) execute_bar.progress(percent_complete + 1) prob = prediction["probability"] if prediction["class"] == 0: st.header("Prediction: Bokeh - Confidence {:.1f}%".format(prob * 100)) elif prediction["class"] == 1: st.header("Prediction: No bokeh detected - Confidence {:.1f}%".format(prob * 100)) st.write("Took {} seconds to run.".format(round(time.time() - start_time, 2)))