Commit
·
03b43e9
1
Parent(s):
02a9af1
Update app.py
Browse files
app.py
CHANGED
@@ -18,16 +18,14 @@ from pathlib import Path
|
|
18 |
MAX_IMAGES = 50
|
19 |
|
20 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
21 |
-
subprocess.run(['wget', training_script_url])
|
22 |
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
|
26 |
-
|
27 |
#Delete .gitattributes to process things properly
|
28 |
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)
|
29 |
|
30 |
-
|
31 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
32 |
model = Blip2ForConditionalGeneration.from_pretrained(
|
33 |
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
|
@@ -287,11 +285,22 @@ git+https://github.com/huggingface/datasets.git'''
|
|
287 |
# The subprocess call for autotrain spacerunner
|
288 |
api = HfApi(token=token)
|
289 |
username = api.whoami()["name"]
|
290 |
-
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-
|
291 |
print(subprocess_command)
|
292 |
subprocess.run(subprocess_command)
|
293 |
-
return f"
|
|
|
|
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
def start_training_og(
|
296 |
lora_name,
|
297 |
training_option,
|
@@ -443,23 +452,41 @@ def run_captioning(*inputs):
|
|
443 |
def check_token(token):
|
444 |
try:
|
445 |
api = HfApi(token=token)
|
|
|
446 |
except Exception as e:
|
447 |
-
gr.Warning("Invalid user token. Make sure to get your Hugging Face")
|
448 |
else:
|
449 |
-
user_data
|
450 |
-
if (username['auth']['accessToken']['role'] != "write"):
|
451 |
gr.Warning("Oops, you've uploaded a `Read` token. You need to use a Write token!")
|
452 |
else:
|
453 |
if user_data['canPay']:
|
454 |
return gr.update(visible=False), gr.update(visible=True)
|
455 |
else:
|
|
|
456 |
return gr.update(visible=True), gr.update(visible=False)
|
457 |
|
458 |
return gr.update(visible=False), gr.update(visible=False)
|
459 |
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
dataset_folder = gr.State()
|
462 |
-
gr.Markdown(
|
|
|
|
|
463 |
lora_name = gr.Textbox(label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
|
464 |
training_option = gr.Radio(
|
465 |
label="What are you training?", choices=["object", "style", "face", "custom"]
|
@@ -496,7 +523,7 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
496 |
with locals()[f"captioning_row_{i}"]:
|
497 |
locals()[f"image_{i}"] = gr.Image(
|
498 |
width=64,
|
499 |
-
height=
|
500 |
min_width=64,
|
501 |
interactive=False,
|
502 |
scale=1,
|
@@ -544,7 +571,6 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
544 |
step=0.0000001,
|
545 |
value=1.0, # For prodigy you start high and it will optimize down
|
546 |
)
|
547 |
-
train_batch_size = gr.Number(label="Train batch size", value=2)
|
548 |
max_train_steps = gr.Number(
|
549 |
label="Max train steps", minimum=1, maximum=50000, value=1000
|
550 |
)
|
@@ -589,7 +615,7 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
589 |
train_text_encoder_ti = gr.Checkbox(
|
590 |
label="Do textual inversion",
|
591 |
value=True,
|
592 |
-
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly.",
|
593 |
)
|
594 |
with gr.Group(visible=True) as pivotal_tuning_params:
|
595 |
train_text_encoder_ti_frac = gr.Number(
|
@@ -633,27 +659,48 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
633 |
with gr.Accordion(open=False, label="Even more advanced options"):
|
634 |
with gr.Row():
|
635 |
with gr.Column():
|
636 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
637 |
checkpointing_steps = gr.Number(
|
638 |
-
|
|
|
|
|
639 |
)
|
640 |
-
prior_loss_weight = gr.Number(
|
641 |
-
|
642 |
-
|
643 |
)
|
644 |
gradient_checkpointing = gr.Checkbox(
|
645 |
label="gradient_checkpointing",
|
646 |
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
|
647 |
value=True,
|
648 |
)
|
649 |
-
enable_xformers_memory_efficient_attention = gr.Checkbox(
|
650 |
-
label="enable_xformers_memory_efficient_attention"
|
651 |
-
)
|
652 |
adam_beta1 = gr.Number(
|
653 |
-
label="adam_beta1",
|
|
|
|
|
|
|
|
|
654 |
)
|
655 |
adam_beta2 = gr.Number(
|
656 |
-
label="adam_beta2",
|
|
|
|
|
|
|
|
|
657 |
)
|
658 |
prodigy_beta3 = gr.Number(
|
659 |
label="Prodigy Beta 3",
|
@@ -685,10 +732,12 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
685 |
maximum=1,
|
686 |
)
|
687 |
prodigy_use_bias_correction = gr.Checkbox(
|
688 |
-
label="Prodigy Use Bias Correction",
|
|
|
689 |
)
|
690 |
prodigy_safeguard_warmup = gr.Checkbox(
|
691 |
-
label="Prodigy Safeguard Warmup",
|
|
|
692 |
)
|
693 |
max_grad_norm = gr.Number(
|
694 |
label="Max Grad Norm",
|
@@ -697,12 +746,18 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
697 |
maximum=10,
|
698 |
step=0.1,
|
699 |
)
|
|
|
|
|
|
|
700 |
with gr.Column():
|
701 |
scale_lr = gr.Checkbox(
|
702 |
label="Scale learning rate",
|
703 |
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
|
704 |
)
|
705 |
-
lr_num_cycles = gr.Number(
|
|
|
|
|
|
|
706 |
lr_scheduler = gr.Dropdown(
|
707 |
label="lr_scheduler",
|
708 |
choices=[
|
@@ -716,25 +771,32 @@ To improve the quality of your outputs, you can add a custom caption for each im
|
|
716 |
value="constant",
|
717 |
)
|
718 |
lr_power = gr.Number(
|
719 |
-
label="lr_power",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
)
|
721 |
-
lr_warmup_steps = gr.Number(label="lr_warmup_steps", value=0)
|
722 |
dataloader_num_workers = gr.Number(
|
723 |
label="Dataloader num workers", value=0, minimum=0, maximum=64
|
724 |
)
|
725 |
-
local_rank = gr.Number(
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
|
|
732 |
with gr.Group(visible=False) as no_payment_method:
|
733 |
with gr.Row():
|
734 |
-
gr.Markdown("Your Hugging Face account doesn't have a payment method. Set it up [here](https://huggingface.co/settings/billing/payment) to train your LoRA")
|
735 |
payment_setup = gr.Button("I have set up my payment method")
|
736 |
-
start = gr.Button("Start training", visible=False)
|
737 |
-
progress_area = gr.
|
738 |
output_components.insert(1, advanced)
|
739 |
output_components.insert(1, cost_estimation)
|
740 |
|
@@ -745,13 +807,14 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
745 |
],
|
746 |
fn=check_token,
|
747 |
inputs=token,
|
748 |
-
outputs=[no_payment_method, start]
|
|
|
749 |
)
|
750 |
use_snr_gamma.change(
|
751 |
lambda x: gr.update(visible=x),
|
752 |
inputs=use_snr_gamma,
|
753 |
outputs=snr_gamma,
|
754 |
-
queue=False
|
755 |
)
|
756 |
with_prior_preservation.change(
|
757 |
lambda x: gr.update(visible=x),
|
@@ -783,26 +846,39 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
783 |
queue=False
|
784 |
)
|
785 |
images.upload(
|
786 |
-
load_captioning,
|
|
|
|
|
|
|
787 |
).then(
|
788 |
change_defaults,
|
789 |
inputs=[training_option, images],
|
790 |
-
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images]
|
|
|
791 |
)
|
792 |
images.change(
|
793 |
check_removed_and_restart,
|
794 |
inputs=[images],
|
795 |
outputs=[captioning_area, advanced, cost_estimation],
|
|
|
796 |
)
|
797 |
training_option.change(
|
798 |
make_options_visible,
|
799 |
inputs=training_option,
|
800 |
outputs=[concept_sentence, image_upload],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
801 |
)
|
802 |
start.click(
|
803 |
fn=create_dataset,
|
804 |
inputs=[images] + caption_list,
|
805 |
-
outputs=dataset_folder
|
|
|
806 |
).then(
|
807 |
fn=start_training,
|
808 |
inputs=[
|
@@ -856,7 +932,8 @@ Grab a Hugging Face <b>write</b> token [here](https://huggingface.co/settings/to
|
|
856 |
dataset_folder,
|
857 |
token
|
858 |
],
|
859 |
-
outputs = progress_area
|
|
|
860 |
)
|
861 |
|
862 |
do_captioning.click(
|
|
|
18 |
MAX_IMAGES = 50
|
19 |
|
20 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
21 |
+
subprocess.run(['wget', '-N', training_script_url])
|
22 |
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset")
|
|
|
26 |
#Delete .gitattributes to process things properly
|
27 |
Path(FACES_DATASET_PATH, '.gitattributes').unlink(missing_ok=True)
|
28 |
|
|
|
29 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
30 |
model = Blip2ForConditionalGeneration.from_pretrained(
|
31 |
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16
|
|
|
285 |
# The subprocess call for autotrain spacerunner
|
286 |
api = HfApi(token=token)
|
287 |
username = api.whoami()["name"]
|
288 |
+
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10gs", "--env","HF_TOKEN=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;HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
|
289 |
print(subprocess_command)
|
290 |
subprocess.run(subprocess_command)
|
291 |
+
return f"""# Your training has started.
|
292 |
+
## - Model page: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a> <small>(the model will be available when training finishes)</small>
|
293 |
+
## - Training Status: <a href='https://huggingface.co/spaces/{username}/autotrain-{slugged_lora_name}?logs=container'>{username}/autotrain-{slugged_lora_name}</a> <small>(in the logs tab)</small>"""
|
294 |
|
295 |
+
def calculate_price(iterations):
|
296 |
+
seconds_per_iteration = 3.50
|
297 |
+
total_seconds = (iterations * seconds_per_iteration) + 210
|
298 |
+
cost_per_second = 1.05/60/60
|
299 |
+
cost = round(cost_per_second * total_seconds, 2)
|
300 |
+
return f'''To train this LoRA, we will duplicate the space and hook an A10G GPU under the hood.
|
301 |
+
## Estimated to cost <b>< US$ {str(cost)}</b> with your current train settings <small>({int(iterations)} iterations at 3.50s/it in Spaces A10G at US$1.05/h)</small>
|
302 |
+
#### Grab a <b>write</b> token [here](https://huggingface.co/settings/tokens), enter it below ↓'''
|
303 |
+
|
304 |
def start_training_og(
|
305 |
lora_name,
|
306 |
training_option,
|
|
|
452 |
def check_token(token):
|
453 |
try:
|
454 |
api = HfApi(token=token)
|
455 |
+
user_data = api.whoami()
|
456 |
except Exception as e:
|
457 |
+
raise gr.Warning("Invalid user token. Make sure to get your Hugging Face token from the settings page")
|
458 |
else:
|
459 |
+
if (user_data['auth']['accessToken']['role'] != "write"):
|
|
|
460 |
gr.Warning("Oops, you've uploaded a `Read` token. You need to use a Write token!")
|
461 |
else:
|
462 |
if user_data['canPay']:
|
463 |
return gr.update(visible=False), gr.update(visible=True)
|
464 |
else:
|
465 |
+
gr.Warning("Your payment methods aren't set up. You gotta set them up to start training")
|
466 |
return gr.update(visible=True), gr.update(visible=False)
|
467 |
|
468 |
return gr.update(visible=False), gr.update(visible=False)
|
469 |
|
470 |
+
css = '''.gr-group{background-color: transparent}
|
471 |
+
.gr-group .hide-container{padding: 1em; background: var(--block-background-fill) !important}
|
472 |
+
.gr-group img{object-fit: cover}
|
473 |
+
#main_title{text-align:center}
|
474 |
+
#main_title h1 {font-size: 2.25rem}
|
475 |
+
#main_title h3, #main_title p{margin-top: 0;font-size: 1.25em}
|
476 |
+
#training_cost h2{margin-top: 10px;padding: 0.5em;border: 1px solid var(--block-border-color);font-size: 1.25em}
|
477 |
+
#training_cost h4{margin-top: 1.25em;margin-bottom: 0}
|
478 |
+
#training_cost small{font-weight: normal}
|
479 |
+
|
480 |
+
'''
|
481 |
+
theme = gr.themes.Monochrome(
|
482 |
+
text_size="lg",
|
483 |
+
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
484 |
+
)
|
485 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
486 |
dataset_folder = gr.State()
|
487 |
+
gr.Markdown('''# Dreambooth Ease 🧞♂️
|
488 |
+
### Train a high quality Dreambooth SDXL LoRA in a breeze ༄, using state-of-the-art techniques
|
489 |
+
<small>[blog about the training script](#), [Colab Pro](#), [run locally or in a cloud](#)</small>''', elem_id="main_title")
|
490 |
lora_name = gr.Textbox(label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy")
|
491 |
training_option = gr.Radio(
|
492 |
label="What are you training?", choices=["object", "style", "face", "custom"]
|
|
|
523 |
with locals()[f"captioning_row_{i}"]:
|
524 |
locals()[f"image_{i}"] = gr.Image(
|
525 |
width=64,
|
526 |
+
height=111,
|
527 |
min_width=64,
|
528 |
interactive=False,
|
529 |
scale=1,
|
|
|
571 |
step=0.0000001,
|
572 |
value=1.0, # For prodigy you start high and it will optimize down
|
573 |
)
|
|
|
574 |
max_train_steps = gr.Number(
|
575 |
label="Max train steps", minimum=1, maximum=50000, value=1000
|
576 |
)
|
|
|
615 |
train_text_encoder_ti = gr.Checkbox(
|
616 |
label="Do textual inversion",
|
617 |
value=True,
|
618 |
+
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly. If untoggled, you can remove the special TOK token from the prompts.",
|
619 |
)
|
620 |
with gr.Group(visible=True) as pivotal_tuning_params:
|
621 |
train_text_encoder_ti_frac = gr.Number(
|
|
|
659 |
with gr.Accordion(open=False, label="Even more advanced options"):
|
660 |
with gr.Row():
|
661 |
with gr.Column():
|
662 |
+
gradient_accumulation_steps = gr.Number(
|
663 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
664 |
+
label="gradient_accumulation_steps",
|
665 |
+
value=1
|
666 |
+
)
|
667 |
+
train_batch_size = gr.Number(
|
668 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
669 |
+
label="Train batch size",
|
670 |
+
value=2
|
671 |
+
)
|
672 |
+
num_train_epochs = gr.Number(
|
673 |
+
info="If you change this setting, the pricing calculation will be wrong",
|
674 |
+
label="num_train_epochs",
|
675 |
+
value=1
|
676 |
+
)
|
677 |
checkpointing_steps = gr.Number(
|
678 |
+
info="How many steps to save intermediate checkpoints",
|
679 |
+
label="checkpointing_steps",
|
680 |
+
value=5000
|
681 |
)
|
682 |
+
prior_loss_weight = gr.Number(
|
683 |
+
label="prior_loss_weight",
|
684 |
+
value=1
|
685 |
)
|
686 |
gradient_checkpointing = gr.Checkbox(
|
687 |
label="gradient_checkpointing",
|
688 |
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass",
|
689 |
value=True,
|
690 |
)
|
|
|
|
|
|
|
691 |
adam_beta1 = gr.Number(
|
692 |
+
label="adam_beta1",
|
693 |
+
value=0.9,
|
694 |
+
minimum=0,
|
695 |
+
maximum=1,
|
696 |
+
step=0.01
|
697 |
)
|
698 |
adam_beta2 = gr.Number(
|
699 |
+
label="adam_beta2",
|
700 |
+
minimum=0,
|
701 |
+
maximum=1,
|
702 |
+
step=0.01,
|
703 |
+
value=0.99
|
704 |
)
|
705 |
prodigy_beta3 = gr.Number(
|
706 |
label="Prodigy Beta 3",
|
|
|
732 |
maximum=1,
|
733 |
)
|
734 |
prodigy_use_bias_correction = gr.Checkbox(
|
735 |
+
label="Prodigy Use Bias Correction",
|
736 |
+
value=True
|
737 |
)
|
738 |
prodigy_safeguard_warmup = gr.Checkbox(
|
739 |
+
label="Prodigy Safeguard Warmup",
|
740 |
+
value=True
|
741 |
)
|
742 |
max_grad_norm = gr.Number(
|
743 |
label="Max Grad Norm",
|
|
|
746 |
maximum=10,
|
747 |
step=0.1,
|
748 |
)
|
749 |
+
enable_xformers_memory_efficient_attention = gr.Checkbox(
|
750 |
+
label="enable_xformers_memory_efficient_attention"
|
751 |
+
)
|
752 |
with gr.Column():
|
753 |
scale_lr = gr.Checkbox(
|
754 |
label="Scale learning rate",
|
755 |
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size",
|
756 |
)
|
757 |
+
lr_num_cycles = gr.Number(
|
758 |
+
label="lr_num_cycles",
|
759 |
+
value=1
|
760 |
+
)
|
761 |
lr_scheduler = gr.Dropdown(
|
762 |
label="lr_scheduler",
|
763 |
choices=[
|
|
|
771 |
value="constant",
|
772 |
)
|
773 |
lr_power = gr.Number(
|
774 |
+
label="lr_power",
|
775 |
+
value=1.0,
|
776 |
+
minimum=0.1,
|
777 |
+
maximum=10
|
778 |
+
)
|
779 |
+
lr_warmup_steps = gr.Number(
|
780 |
+
label="lr_warmup_steps",
|
781 |
+
value=0
|
782 |
)
|
|
|
783 |
dataloader_num_workers = gr.Number(
|
784 |
label="Dataloader num workers", value=0, minimum=0, maximum=64
|
785 |
)
|
786 |
+
local_rank = gr.Number(
|
787 |
+
label="local_rank",
|
788 |
+
value=-1
|
789 |
+
)
|
790 |
+
with gr.Column(visible=False) as cost_estimation:
|
791 |
+
with gr.Group(elem_id="cost_box"):
|
792 |
+
training_cost_estimate = gr.Markdown(elem_id="training_cost")
|
793 |
+
token = gr.Textbox(label="Your Hugging Face write token", info="A Hugging Face write token you can obtain on the settings page", type="password", placeholder="hf_OhHiThIsIsNoTaReALToKeNGOoDTry")
|
794 |
with gr.Group(visible=False) as no_payment_method:
|
795 |
with gr.Row():
|
796 |
+
gr.Markdown("## Your Hugging Face account doesn't have a payment method. Set it up [here](https://huggingface.co/settings/billing/payment) to train your LoRA")
|
797 |
payment_setup = gr.Button("I have set up my payment method")
|
798 |
+
start = gr.Button("Start training", visible=False, interactive=True)
|
799 |
+
progress_area = gr.Markdown("")
|
800 |
output_components.insert(1, advanced)
|
801 |
output_components.insert(1, cost_estimation)
|
802 |
|
|
|
807 |
],
|
808 |
fn=check_token,
|
809 |
inputs=token,
|
810 |
+
outputs=[no_payment_method, start],
|
811 |
+
queue=False
|
812 |
)
|
813 |
use_snr_gamma.change(
|
814 |
lambda x: gr.update(visible=x),
|
815 |
inputs=use_snr_gamma,
|
816 |
outputs=snr_gamma,
|
817 |
+
queue=False
|
818 |
)
|
819 |
with_prior_preservation.change(
|
820 |
lambda x: gr.update(visible=x),
|
|
|
846 |
queue=False
|
847 |
)
|
848 |
images.upload(
|
849 |
+
load_captioning,
|
850 |
+
inputs=[images, concept_sentence],
|
851 |
+
outputs=output_components,
|
852 |
+
queue=False
|
853 |
).then(
|
854 |
change_defaults,
|
855 |
inputs=[training_option, images],
|
856 |
+
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images],
|
857 |
+
queue=False
|
858 |
)
|
859 |
images.change(
|
860 |
check_removed_and_restart,
|
861 |
inputs=[images],
|
862 |
outputs=[captioning_area, advanced, cost_estimation],
|
863 |
+
queue=False
|
864 |
)
|
865 |
training_option.change(
|
866 |
make_options_visible,
|
867 |
inputs=training_option,
|
868 |
outputs=[concept_sentence, image_upload],
|
869 |
+
queue=False
|
870 |
+
)
|
871 |
+
max_train_steps.change(
|
872 |
+
calculate_price,
|
873 |
+
inputs=[max_train_steps],
|
874 |
+
outputs=[training_cost_estimate],
|
875 |
+
queue=False
|
876 |
)
|
877 |
start.click(
|
878 |
fn=create_dataset,
|
879 |
inputs=[images] + caption_list,
|
880 |
+
outputs=dataset_folder,
|
881 |
+
queue=False
|
882 |
).then(
|
883 |
fn=start_training,
|
884 |
inputs=[
|
|
|
932 |
dataset_folder,
|
933 |
token
|
934 |
],
|
935 |
+
outputs = progress_area,
|
936 |
+
queue=False
|
937 |
)
|
938 |
|
939 |
do_captioning.click(
|