Spaces:
Sleeping
Sleeping
""" | |
Hourglass network, taken from https://github.com/zhou13/lcnn | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
__all__ = ["HourglassNet", "hg"] | |
class MultitaskHead(nn.Module): | |
def __init__(self, input_channels, num_class): | |
super(MultitaskHead, self).__init__() | |
m = int(input_channels / 4) | |
head_size = [[2], [1], [2]] | |
heads = [] | |
for output_channels in sum(head_size, []): | |
heads.append( | |
nn.Sequential( | |
nn.Conv2d(input_channels, m, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(m, output_channels, kernel_size=1), | |
) | |
) | |
self.heads = nn.ModuleList(heads) | |
assert num_class == sum(sum(head_size, [])) | |
def forward(self, x): | |
return torch.cat([head(x) for head in self.heads], dim=1) | |
class Bottleneck2D(nn.Module): | |
expansion = 2 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck2D, self).__init__() | |
self.bn1 = nn.BatchNorm2d(inplanes) | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1) | |
self.bn3 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.bn1(x) | |
out = self.relu(out) | |
out = self.conv1(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn3(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
return out | |
class Hourglass(nn.Module): | |
def __init__(self, block, num_blocks, planes, depth): | |
super(Hourglass, self).__init__() | |
self.depth = depth | |
self.block = block | |
self.hg = self._make_hour_glass(block, num_blocks, planes, depth) | |
def _make_residual(self, block, num_blocks, planes): | |
layers = [] | |
for i in range(0, num_blocks): | |
layers.append(block(planes * block.expansion, planes)) | |
return nn.Sequential(*layers) | |
def _make_hour_glass(self, block, num_blocks, planes, depth): | |
hg = [] | |
for i in range(depth): | |
res = [] | |
for j in range(3): | |
res.append(self._make_residual(block, num_blocks, planes)) | |
if i == 0: | |
res.append(self._make_residual(block, num_blocks, planes)) | |
hg.append(nn.ModuleList(res)) | |
return nn.ModuleList(hg) | |
def _hour_glass_forward(self, n, x): | |
up1 = self.hg[n - 1][0](x) | |
low1 = F.max_pool2d(x, 2, stride=2) | |
low1 = self.hg[n - 1][1](low1) | |
if n > 1: | |
low2 = self._hour_glass_forward(n - 1, low1) | |
else: | |
low2 = self.hg[n - 1][3](low1) | |
low3 = self.hg[n - 1][2](low2) | |
# up2 = F.interpolate(low3, scale_factor=2) | |
up2 = F.interpolate(low3, size=up1.shape[2:]) | |
out = up1 + up2 | |
return out | |
def forward(self, x): | |
return self._hour_glass_forward(self.depth, x) | |
class HourglassNet(nn.Module): | |
"""Hourglass model from Newell et al ECCV 2016""" | |
def __init__( | |
self, block, head, depth, num_stacks, num_blocks, num_classes, input_channels | |
): | |
super(HourglassNet, self).__init__() | |
self.inplanes = 64 | |
self.num_feats = 128 | |
self.num_stacks = num_stacks | |
self.conv1 = nn.Conv2d( | |
input_channels, self.inplanes, kernel_size=7, stride=2, padding=3 | |
) | |
self.bn1 = nn.BatchNorm2d(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.layer1 = self._make_residual(block, self.inplanes, 1) | |
self.layer2 = self._make_residual(block, self.inplanes, 1) | |
self.layer3 = self._make_residual(block, self.num_feats, 1) | |
self.maxpool = nn.MaxPool2d(2, stride=2) | |
# build hourglass modules | |
ch = self.num_feats * block.expansion | |
# vpts = [] | |
hg, res, fc, score, fc_, score_ = [], [], [], [], [], [] | |
for i in range(num_stacks): | |
hg.append(Hourglass(block, num_blocks, self.num_feats, depth)) | |
res.append(self._make_residual(block, self.num_feats, num_blocks)) | |
fc.append(self._make_fc(ch, ch)) | |
score.append(head(ch, num_classes)) | |
# vpts.append(VptsHead(ch)) | |
# vpts.append(nn.Linear(ch, 9)) | |
# score.append(nn.Conv2d(ch, num_classes, kernel_size=1)) | |
# score[i].bias.data[0] += 4.6 | |
# score[i].bias.data[2] += 4.6 | |
if i < num_stacks - 1: | |
fc_.append(nn.Conv2d(ch, ch, kernel_size=1)) | |
score_.append(nn.Conv2d(num_classes, ch, kernel_size=1)) | |
self.hg = nn.ModuleList(hg) | |
self.res = nn.ModuleList(res) | |
self.fc = nn.ModuleList(fc) | |
self.score = nn.ModuleList(score) | |
# self.vpts = nn.ModuleList(vpts) | |
self.fc_ = nn.ModuleList(fc_) | |
self.score_ = nn.ModuleList(score_) | |
def _make_residual(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
) | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_fc(self, inplanes, outplanes): | |
bn = nn.BatchNorm2d(inplanes) | |
conv = nn.Conv2d(inplanes, outplanes, kernel_size=1) | |
return nn.Sequential(conv, bn, self.relu) | |
def forward(self, x): | |
out = [] | |
# out_vps = [] | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x = self.maxpool(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
for i in range(self.num_stacks): | |
y = self.hg[i](x) | |
y = self.res[i](y) | |
y = self.fc[i](y) | |
score = self.score[i](y) | |
# pre_vpts = F.adaptive_avg_pool2d(x, (1, 1)) | |
# pre_vpts = pre_vpts.reshape(-1, 256) | |
# vpts = self.vpts[i](x) | |
out.append(score) | |
# out_vps.append(vpts) | |
if i < self.num_stacks - 1: | |
fc_ = self.fc_[i](y) | |
score_ = self.score_[i](score) | |
x = x + fc_ + score_ | |
return out[::-1], y # , out_vps[::-1] | |
def hg(**kwargs): | |
model = HourglassNet( | |
Bottleneck2D, | |
head=kwargs.get("head", lambda c_in, c_out: nn.Conv2D(c_in, c_out, 1)), | |
depth=kwargs["depth"], | |
num_stacks=kwargs["num_stacks"], | |
num_blocks=kwargs["num_blocks"], | |
num_classes=kwargs["num_classes"], | |
input_channels=kwargs["input_channels"], | |
) | |
return model | |