""" Hourglass network, taken from https://github.com/zhou13/lcnn """ import torch import torch.nn as nn import torch.nn.functional as F __all__ = ["HourglassNet", "hg"] class MultitaskHead(nn.Module): def __init__(self, input_channels, num_class): super(MultitaskHead, self).__init__() m = int(input_channels / 4) head_size = [[2], [1], [2]] heads = [] for output_channels in sum(head_size, []): heads.append( nn.Sequential( nn.Conv2d(input_channels, m, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(m, output_channels, kernel_size=1), ) ) self.heads = nn.ModuleList(heads) assert num_class == sum(sum(head_size, [])) def forward(self, x): return torch.cat([head(x) for head in self.heads], dim=1) class Bottleneck2D(nn.Module): expansion = 2 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck2D, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) if self.downsample is not None: residual = self.downsample(x) out += residual return out class Hourglass(nn.Module): def __init__(self, block, num_blocks, planes, depth): super(Hourglass, self).__init__() self.depth = depth self.block = block self.hg = self._make_hour_glass(block, num_blocks, planes, depth) def _make_residual(self, block, num_blocks, planes): layers = [] for i in range(0, num_blocks): layers.append(block(planes * block.expansion, planes)) return nn.Sequential(*layers) def _make_hour_glass(self, block, num_blocks, planes, depth): hg = [] for i in range(depth): res = [] for j in range(3): res.append(self._make_residual(block, num_blocks, planes)) if i == 0: res.append(self._make_residual(block, num_blocks, planes)) hg.append(nn.ModuleList(res)) return nn.ModuleList(hg) def _hour_glass_forward(self, n, x): up1 = self.hg[n - 1][0](x) low1 = F.max_pool2d(x, 2, stride=2) low1 = self.hg[n - 1][1](low1) if n > 1: low2 = self._hour_glass_forward(n - 1, low1) else: low2 = self.hg[n - 1][3](low1) low3 = self.hg[n - 1][2](low2) # up2 = F.interpolate(low3, scale_factor=2) up2 = F.interpolate(low3, size=up1.shape[2:]) out = up1 + up2 return out def forward(self, x): return self._hour_glass_forward(self.depth, x) class HourglassNet(nn.Module): """Hourglass model from Newell et al ECCV 2016""" def __init__( self, block, head, depth, num_stacks, num_blocks, num_classes, input_channels ): super(HourglassNet, self).__init__() self.inplanes = 64 self.num_feats = 128 self.num_stacks = num_stacks self.conv1 = nn.Conv2d( input_channels, self.inplanes, kernel_size=7, stride=2, padding=3 ) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_residual(block, self.inplanes, 1) self.layer2 = self._make_residual(block, self.inplanes, 1) self.layer3 = self._make_residual(block, self.num_feats, 1) self.maxpool = nn.MaxPool2d(2, stride=2) # build hourglass modules ch = self.num_feats * block.expansion # vpts = [] hg, res, fc, score, fc_, score_ = [], [], [], [], [], [] for i in range(num_stacks): hg.append(Hourglass(block, num_blocks, self.num_feats, depth)) res.append(self._make_residual(block, self.num_feats, num_blocks)) fc.append(self._make_fc(ch, ch)) score.append(head(ch, num_classes)) # vpts.append(VptsHead(ch)) # vpts.append(nn.Linear(ch, 9)) # score.append(nn.Conv2d(ch, num_classes, kernel_size=1)) # score[i].bias.data[0] += 4.6 # score[i].bias.data[2] += 4.6 if i < num_stacks - 1: fc_.append(nn.Conv2d(ch, ch, kernel_size=1)) score_.append(nn.Conv2d(num_classes, ch, kernel_size=1)) self.hg = nn.ModuleList(hg) self.res = nn.ModuleList(res) self.fc = nn.ModuleList(fc) self.score = nn.ModuleList(score) # self.vpts = nn.ModuleList(vpts) self.fc_ = nn.ModuleList(fc_) self.score_ = nn.ModuleList(score_) def _make_residual(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, ) ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _make_fc(self, inplanes, outplanes): bn = nn.BatchNorm2d(inplanes) conv = nn.Conv2d(inplanes, outplanes, kernel_size=1) return nn.Sequential(conv, bn, self.relu) def forward(self, x): out = [] # out_vps = [] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.maxpool(x) x = self.layer2(x) x = self.layer3(x) for i in range(self.num_stacks): y = self.hg[i](x) y = self.res[i](y) y = self.fc[i](y) score = self.score[i](y) # pre_vpts = F.adaptive_avg_pool2d(x, (1, 1)) # pre_vpts = pre_vpts.reshape(-1, 256) # vpts = self.vpts[i](x) out.append(score) # out_vps.append(vpts) if i < self.num_stacks - 1: fc_ = self.fc_[i](y) score_ = self.score_[i](score) x = x + fc_ + score_ return out[::-1], y # , out_vps[::-1] def hg(**kwargs): model = HourglassNet( Bottleneck2D, head=kwargs.get("head", lambda c_in, c_out: nn.Conv2D(c_in, c_out, 1)), depth=kwargs["depth"], num_stacks=kwargs["num_stacks"], num_blocks=kwargs["num_blocks"], num_classes=kwargs["num_classes"], input_channels=kwargs["input_channels"], ) return model