fffiloni's picture
Migrated from GitHub
fc0a183 verified
# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py
# Convert unipc for flow matching
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin
from diffusers.configuration_utils import register_to_config
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.schedulers.scheduling_utils import SchedulerOutput
from diffusers.utils import deprecate
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
"""
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
solver_order (`int`, default `2`):
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
unconditional sampling.
prediction_type (`str`, defaults to "flow_prediction"):
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
the flow of the diffusion process.
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
predict_x0 (`bool`, defaults to `True`):
Whether to use the updating algorithm on the predicted x0.
solver_type (`str`, default `bh2`):
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
otherwise.
lower_order_final (`bool`, default `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
disable_corrector (`list`, default `[]`):
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
usually disabled during the first few steps.
solver_p (`SchedulerMixin`, default `None`):
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
final_sigmas_type (`str`, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
solver_order: int = 2,
prediction_type: str = "flow_prediction",
shift: Optional[float] = 1.0,
use_dynamic_shifting=False,
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
predict_x0: bool = True,
solver_type: str = "bh2",
lower_order_final: bool = True,
disable_corrector: List[int] = [],
solver_p: SchedulerMixin = None,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
):
if solver_type not in ["bh1", "bh2"]:
if solver_type in ["midpoint", "heun", "logrho"]:
self.register_to_config(solver_type="bh2")
else:
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
self.predict_x0 = predict_x0
# setable values
self.num_inference_steps = None
alphas = np.linspace(1, 1 / num_train_timesteps, num_train_timesteps)[::-1].copy()
sigmas = 1.0 - alphas
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
if not use_dynamic_shifting:
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore
self.sigmas = sigmas
self.timesteps = sigmas * num_train_timesteps
self.model_outputs = [None] * solver_order
self.timestep_list = [None] * solver_order
self.lower_order_nums = 0
self.disable_corrector = disable_corrector
self.solver_p = solver_p
self.last_sample = None
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
# Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
def set_timesteps(
self,
num_inference_steps: Union[int, None] = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[Union[float, None]] = None,
shift: Optional[Union[float, None]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
Total number of the spacing of the time steps.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
if sigmas is None:
sigmas = np.linspace(self.sigma_max, self.sigma_min, num_inference_steps + 1).copy()[:-1] # pyright: ignore
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
else:
if shift is None:
shift = self.config.shift
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) # pyright: ignore
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
)
timesteps = sigmas * self.config.num_train_timesteps
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) # pyright: ignore
self.sigmas = torch.from_numpy(sigmas)
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
self.num_inference_steps = len(timesteps)
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
self.last_sample = None
if self.solver_p:
self.solver_p.set_timesteps(self.num_inference_steps, device=device)
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def _sigma_to_alpha_sigma_t(self, sigma):
return 1 - sigma, sigma
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def convert_model_output(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
r"""
Convert the model output to the corresponding type the UniPC algorithm needs.
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The converted model output.
"""
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError("missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
if self.predict_x0:
if self.config.prediction_type == "flow_prediction":
sigma_t = self.sigmas[self.step_index]
x0_pred = sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
)
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
else:
if self.config.prediction_type == "flow_prediction":
sigma_t = self.sigmas[self.step_index]
epsilon = sample - (1 - sigma_t) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
)
if self.config.thresholding:
sigma_t = self.sigmas[self.step_index]
x0_pred = sample - sigma_t * model_output
x0_pred = self._threshold_sample(x0_pred)
epsilon = model_output + x0_pred
return epsilon
def multistep_uni_p_bh_update(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
order: int = None, # pyright: ignore
**kwargs,
) -> torch.Tensor:
"""
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model at the current timestep.
prev_timestep (`int`):
The previous discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
order (`int`):
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if order is None:
if len(args) > 2:
order = args[2]
else:
raise ValueError(" missing `order` as a required keyward argument")
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
model_output_list = self.model_outputs
s0 = self.timestep_list[-1]
m0 = model_output_list[-1]
x = sample
if self.solver_p:
x_t = self.solver_p.step(model_output, s0, x).prev_sample
return x_t
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] # pyright: ignore
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
h = lambda_t - lambda_s0
device = sample.device
rks = []
D1s = []
for i in range(1, order):
si = self.step_index - i # pyright: ignore
mi = model_output_list[-(i + 1)]
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk) # pyright: ignore
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
else:
D1s = None
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore
else:
pred_res = 0
x_t = x_t_ - alpha_t * B_h * pred_res
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s) # pyright: ignore
else:
pred_res = 0
x_t = x_t_ - sigma_t * B_h * pred_res
x_t = x_t.to(x.dtype)
return x_t
def multistep_uni_c_bh_update(
self,
this_model_output: torch.Tensor,
*args,
last_sample: torch.Tensor = None,
this_sample: torch.Tensor = None,
order: int = None, # pyright: ignore
**kwargs,
) -> torch.Tensor:
"""
One step for the UniC (B(h) version).
Args:
this_model_output (`torch.Tensor`):
The model outputs at `x_t`.
this_timestep (`int`):
The current timestep `t`.
last_sample (`torch.Tensor`):
The generated sample before the last predictor `x_{t-1}`.
this_sample (`torch.Tensor`):
The generated sample after the last predictor `x_{t}`.
order (`int`):
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
Returns:
`torch.Tensor`:
The corrected sample tensor at the current timestep.
"""
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
if last_sample is None:
if len(args) > 1:
last_sample = args[1]
else:
raise ValueError(" missing`last_sample` as a required keyward argument")
if this_sample is None:
if len(args) > 2:
this_sample = args[2]
else:
raise ValueError(" missing`this_sample` as a required keyward argument")
if order is None:
if len(args) > 3:
order = args[3]
else:
raise ValueError(" missing`order` as a required keyward argument")
if this_timestep is not None:
deprecate(
"this_timestep",
"1.0.0",
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
model_output_list = self.model_outputs
m0 = model_output_list[-1]
x = last_sample
x_t = this_sample
model_t = this_model_output
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1] # pyright: ignore
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
h = lambda_t - lambda_s0
device = this_sample.device
rks = []
D1s = []
for i in range(1, order):
si = self.step_index - (i + 1) # pyright: ignore
mi = model_output_list[-(i + 1)]
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk) # pyright: ignore
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1)
else:
D1s = None
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
if self.predict_x0:
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
if D1s is not None:
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
x_t = x_t.to(x.dtype)
return x_t
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
"""
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
return_dict: bool = True,
generator=None,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the multistep UniPC.
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
use_corrector = (
self.step_index > 0
and self.step_index - 1 not in self.disable_corrector
and self.last_sample is not None # pyright: ignore
)
model_output_convert = self.convert_model_output(model_output, sample=sample)
if use_corrector:
sample = self.multistep_uni_c_bh_update(
this_model_output=model_output_convert,
last_sample=self.last_sample,
this_sample=sample,
order=self.this_order,
)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.timestep_list[i] = self.timestep_list[i + 1]
self.model_outputs[-1] = model_output_convert
self.timestep_list[-1] = timestep # pyright: ignore
if self.config.lower_order_final:
this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index) # pyright: ignore
else:
this_order = self.config.solver_order
self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep
assert self.this_order > 0
self.last_sample = sample
prev_sample = self.multistep_uni_p_bh_update(
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
sample=sample,
order=self.this_order,
)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1 # pyright: ignore
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps