Spaces:
Running
Running
import os | |
from typing import List | |
from typing import Optional | |
from typing import Union | |
import numpy as np | |
import torch | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.video_processor import VideoProcessor | |
from PIL import Image | |
from tqdm import tqdm | |
from ..modules import get_image_encoder | |
from ..modules import get_text_encoder | |
from ..modules import get_transformer | |
from ..modules import get_vae | |
from ..scheduler.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
def resizecrop(image: Image.Image, th, tw): | |
w, h = image.size | |
if w == tw and h == th: | |
return image | |
if h / w > th / tw: | |
new_w = int(w) | |
new_h = int(new_w * th / tw) | |
else: | |
new_h = int(h) | |
new_w = int(new_h * tw / th) | |
left = (w - new_w) / 2 | |
top = (h - new_h) / 2 | |
right = (w + new_w) / 2 | |
bottom = (h + new_h) / 2 | |
image = image.crop((left, top, right, bottom)) | |
return image | |
class Image2VideoPipeline: | |
def __init__( | |
self, model_path, dit_path, device: str = "cuda", weight_dtype=torch.bfloat16, use_usp=False, offload=False | |
): | |
load_device = "cpu" if offload else device | |
self.transformer = get_transformer(dit_path, load_device, weight_dtype) | |
vae_model_path = os.path.join(model_path, "Wan2.1_VAE.pth") | |
self.vae = get_vae(vae_model_path, device, weight_dtype=torch.float32) | |
self.text_encoder = get_text_encoder(model_path, load_device, weight_dtype) | |
self.clip = get_image_encoder(model_path, load_device, weight_dtype) | |
self.sp_size = 1 | |
self.device = device | |
self.offload = offload | |
self.video_processor = VideoProcessor(vae_scale_factor=16) | |
if use_usp: | |
from xfuser.core.distributed import get_sequence_parallel_world_size | |
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward | |
import types | |
for block in self.transformer.blocks: | |
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) | |
self.transformer.forward = types.MethodType(usp_dit_forward, self.transformer) | |
self.sp_size = get_sequence_parallel_world_size() | |
self.scheduler = FlowUniPCMultistepScheduler() | |
self.vae_stride = (4, 8, 8) | |
self.patch_size = (1, 2, 2) | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
height: int = 544, | |
width: int = 960, | |
num_frames: int = 97, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 5.0, | |
shift: float = 5.0, | |
generator: Optional[torch.Generator] = None, | |
): | |
F = num_frames | |
latent_height = height // 8 // 2 * 2 | |
latent_width = width // 8 // 2 * 2 | |
latent_length = (F - 1) // 4 + 1 | |
h = latent_height * 8 | |
w = latent_width * 8 | |
img = self.video_processor.preprocess(image, height=h, width=w) | |
img = img.to(device=self.device, dtype=self.transformer.dtype) | |
padding_video = torch.zeros(img.shape[0], 3, F - 1, h, w, device=self.device) | |
img = img.unsqueeze(2) | |
img_cond = torch.concat([img, padding_video], dim=2) | |
img_cond = self.vae.encode(img_cond) | |
mask = torch.ones_like(img_cond) | |
mask[:, :, 1:] = 0 | |
y = torch.cat([mask[:, :4], img_cond], dim=1) | |
self.clip.to(self.device) | |
clip_context = self.clip.encode_video(img) | |
if self.offload: | |
self.clip.cpu() | |
torch.cuda.empty_cache() | |
# preprocess | |
self.text_encoder.to(self.device) | |
context = self.text_encoder.encode(prompt).to(self.device) | |
context_null = self.text_encoder.encode(negative_prompt).to(self.device) | |
if self.offload: | |
self.text_encoder.cpu() | |
torch.cuda.empty_cache() | |
latent = torch.randn( | |
16, latent_length, latent_height, latent_width, dtype=torch.float32, generator=generator, device=self.device | |
) | |
self.transformer.to(self.device) | |
with torch.amp.autocast("cuda", dtype=self.transformer.dtype), torch.no_grad(): | |
self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift) | |
timesteps = self.scheduler.timesteps | |
arg_c = { | |
"context": context, | |
"clip_fea": clip_context, | |
"y": y, | |
} | |
arg_null = { | |
"context": context_null, | |
"clip_fea": clip_context, | |
"y": y, | |
} | |
self.transformer.to(self.device) | |
for _, t in enumerate(tqdm(timesteps)): | |
latent_model_input = torch.stack([latent]).to(self.device) | |
timestep = torch.stack([t]).to(self.device) | |
noise_pred_cond = self.transformer(latent_model_input, t=timestep, **arg_c)[0].to(self.device) | |
noise_pred_uncond = self.transformer(latent_model_input, t=timestep, **arg_null)[0].to(self.device) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
temp_x0 = self.scheduler.step( | |
noise_pred.unsqueeze(0), t, latent.unsqueeze(0), return_dict=False, generator=generator | |
)[0] | |
latent = temp_x0.squeeze(0) | |
if self.offload: | |
self.transformer.cpu() | |
torch.cuda.empty_cache() | |
videos = self.vae.decode(latent) | |
videos = (videos / 2 + 0.5).clamp(0, 1) | |
videos = [video for video in videos] | |
videos = [video.permute(1, 2, 3, 0) * 255 for video in videos] | |
videos = [video.cpu().numpy().astype(np.uint8) for video in videos] | |
return videos | |