SkyReels-V2 / skyreels_v2_infer /pipelines /diffusion_forcing_pipeline.py
fffiloni's picture
Migrated from GitHub
fc0a183 verified
import math
import os
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm
from ..modules import get_text_encoder
from ..modules import get_transformer
from ..modules import get_vae
from ..scheduler.fm_solvers_unipc import FlowUniPCMultistepScheduler
class DiffusionForcingPipeline:
"""
A pipeline for diffusion-based video generation tasks.
This pipeline supports two main tasks:
- Image-to-Video (i2v): Generates a video sequence from a source image
- Text-to-Video (t2v): Generates a video sequence from a text description
The pipeline integrates multiple components including:
- A transformer model for diffusion
- A VAE for encoding/decoding
- A text encoder for processing text prompts
- An image encoder for processing image inputs (i2v mode only)
"""
def __init__(
self,
model_path: str,
dit_path: str,
device: str = "cuda",
weight_dtype=torch.bfloat16,
use_usp=False,
offload=False,
):
"""
Initialize the diffusion forcing pipeline class
Args:
model_path (str): Path to the model
dit_path (str): Path to the DIT model, containing model configuration file (config.json) and weight file (*.safetensor)
device (str): Device to run on, defaults to 'cuda'
weight_dtype: Weight data type, defaults to torch.bfloat16
"""
load_device = "cpu" if offload else device
self.transformer = get_transformer(dit_path, load_device, weight_dtype)
vae_model_path = os.path.join(model_path, "Wan2.1_VAE.pth")
self.vae = get_vae(vae_model_path, device, weight_dtype=torch.float32)
self.text_encoder = get_text_encoder(model_path, load_device, weight_dtype)
self.video_processor = VideoProcessor(vae_scale_factor=16)
self.device = device
self.offload = offload
if use_usp:
from xfuser.core.distributed import get_sequence_parallel_world_size
from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward
import types
for block in self.transformer.blocks:
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
self.transformer.forward = types.MethodType(usp_dit_forward, self.transformer)
self.sp_size = get_sequence_parallel_world_size()
self.scheduler = FlowUniPCMultistepScheduler()
@property
def do_classifier_free_guidance(self) -> bool:
return self._guidance_scale > 1
def encode_image(
self, image: PipelineImageInput, height: int, width: int, num_frames: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# prefix_video
prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1)
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]] # [(c, f, h, w)]
causal_block_size = self.transformer.num_frame_per_block
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
return prefix_video, predix_video_latent_length
def prepare_latents(
self,
shape: Tuple[int],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
return randn_tensor(shape, generator, device=device, dtype=dtype)
def generate_timestep_matrix(
self,
num_frames,
step_template,
base_num_frames,
ar_step=5,
num_pre_ready=0,
casual_block_size=1,
shrink_interval_with_mask=False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
step_matrix, step_index = [], []
update_mask, valid_interval = [], []
num_iterations = len(step_template) + 1
num_frames_block = num_frames // casual_block_size
base_num_frames_block = base_num_frames // casual_block_size
if base_num_frames_block < num_frames_block:
infer_step_num = len(step_template)
gen_block = base_num_frames_block
min_ar_step = infer_step_num / gen_block
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
step_template = torch.cat(
[
torch.tensor([999], dtype=torch.int64, device=step_template.device),
step_template.long(),
torch.tensor([0], dtype=torch.int64, device=step_template.device),
]
) # to handle the counter in row works starting from 1
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
if num_pre_ready > 0:
pre_row[: num_pre_ready // casual_block_size] = num_iterations
while torch.all(pre_row >= (num_iterations - 1)) == False:
new_row = torch.zeros(num_frames_block, dtype=torch.long)
for i in range(num_frames_block):
if i == 0 or pre_row[i - 1] >= (
num_iterations - 1
): # the first frame or the last frame is completely denoised
new_row[i] = pre_row[i] + 1
else:
new_row[i] = new_row[i - 1] - ar_step
new_row = new_row.clamp(0, num_iterations)
update_mask.append(
(new_row != pre_row) & (new_row != num_iterations)
) # False: no need to update, True: need to update
step_index.append(new_row)
step_matrix.append(step_template[new_row])
pre_row = new_row
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
terminal_flag = base_num_frames_block
if shrink_interval_with_mask:
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
update_mask = update_mask[0]
update_mask_idx = idx_sequence[update_mask]
last_update_idx = update_mask_idx[-1].item()
terminal_flag = last_update_idx + 1
# for i in range(0, len(update_mask)):
for curr_mask in update_mask:
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
terminal_flag += 1
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
step_update_mask = torch.stack(update_mask, dim=0)
step_index = torch.stack(step_index, dim=0)
step_matrix = torch.stack(step_matrix, dim=0)
if casual_block_size > 1:
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
return step_matrix, step_index, step_update_mask, valid_interval
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Union[str, List[str]] = "",
image: PipelineImageInput = None,
height: int = 480,
width: int = 832,
num_frames: int = 97,
num_inference_steps: int = 50,
shift: float = 1.0,
guidance_scale: float = 5.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
overlap_history: int = None,
addnoise_condition: int = 0,
base_num_frames: int = 97,
ar_step: int = 5,
causal_block_size: int = None,
fps: int = 24,
):
latent_height = height // 8
latent_width = width // 8
latent_length = (num_frames - 1) // 4 + 1
self._guidance_scale = guidance_scale
i2v_extra_kwrags = {}
prefix_video = None
predix_video_latent_length = 0
if image:
prefix_video, predix_video_latent_length = self.encode_image(image, height, width, num_frames)
self.text_encoder.to(self.device)
prompt_embeds = self.text_encoder.encode(prompt).to(self.transformer.dtype)
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder.encode(negative_prompt).to(self.transformer.dtype)
if self.offload:
self.text_encoder.cpu()
torch.cuda.empty_cache()
self.scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device, shift=shift)
init_timesteps = self.scheduler.timesteps
if causal_block_size is None:
causal_block_size = self.transformer.num_frame_per_block
fps_embeds = [fps] * prompt_embeds.shape[0]
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
transformer_dtype = self.transformer.dtype
# with torch.cuda.amp.autocast(dtype=self.transformer.dtype), torch.no_grad():
if overlap_history is None or base_num_frames is None or num_frames <= base_num_frames:
# short video generation
latent_shape = [16, latent_length, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=transformer_dtype, device=prompt_embeds.device, generator=generator
)
latents = [latents]
if prefix_video is not None:
latents[0][:, :predix_video_latent_length] = prefix_video[0].to(transformer_dtype)
base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
latent_length, init_timesteps, base_num_frames, ar_step, predix_video_latent_length, causal_block_size
)
sample_schedulers = []
for _ in range(latent_length):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * latent_length
self.transformer.to(self.device)
for i, timestep_i in enumerate(tqdm(step_matrix)):
update_mask_i = step_update_mask[i]
valid_interval_i = valid_interval[i]
valid_interval_start, valid_interval_end = valid_interval_i
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * addnoise_condition
timestep_for_noised_condition = addnoise_condition
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] * (1.0 - noise_factor)
+ torch.randn_like(latent_model_input[0][:, valid_interval_start:predix_video_latent_length])
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
if not self.do_classifier_free_guidance:
noise_pred = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
else:
noise_pred_cond = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
noise_pred_uncond = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=negative_prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[0][:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[0][:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if self.offload:
self.transformer.cpu()
torch.cuda.empty_cache()
x0 = latents[0].unsqueeze(0)
videos = self.vae.decode(x0)
videos = (videos / 2 + 0.5).clamp(0, 1)
videos = [video for video in videos]
videos = [video.permute(1, 2, 3, 0) * 255 for video in videos]
videos = [video.cpu().numpy().astype(np.uint8) for video in videos]
return videos
else:
# long video generation
base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
overlap_history_frames = (overlap_history - 1) // 4 + 1
n_iter = 1 + (latent_length - base_num_frames - 1) // (base_num_frames - overlap_history_frames) + 1
print(f"n_iter:{n_iter}")
output_video = None
for i in range(n_iter):
if output_video is not None: # i !=0
prefix_video = output_video[:, -overlap_history:].to(prompt_embeds.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
finished_frame_num = i * (base_num_frames - overlap_history_frames) + overlap_history_frames
left_frame_num = latent_length - finished_frame_num
base_num_frames_iter = min(left_frame_num + overlap_history_frames, base_num_frames)
if ar_step > 0 and self.transformer.enable_teacache:
num_steps = num_inference_steps + ((base_num_frames_iter - overlap_history_frames) // causal_block_size - 1) * ar_step
self.transformer.num_steps = num_steps
else: # i == 0
base_num_frames_iter = base_num_frames
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=transformer_dtype, device=prompt_embeds.device, generator=generator
)
latents = [latents]
if prefix_video is not None:
latents[0][:, :predix_video_latent_length] = prefix_video[0].to(transformer_dtype)
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
base_num_frames_iter,
init_timesteps,
base_num_frames_iter,
ar_step,
predix_video_latent_length,
causal_block_size,
)
sample_schedulers = []
for _ in range(base_num_frames_iter):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * base_num_frames_iter
self.transformer.to(self.device)
for i, timestep_i in enumerate(tqdm(step_matrix)):
update_mask_i = step_update_mask[i]
valid_interval_i = valid_interval[i]
valid_interval_start, valid_interval_end = valid_interval_i
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * addnoise_condition
timestep_for_noised_condition = addnoise_condition
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
* (1.0 - noise_factor)
+ torch.randn_like(
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
)
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
if not self.do_classifier_free_guidance:
noise_pred = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
else:
noise_pred_cond = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
noise_pred_uncond = self.transformer(
torch.stack([latent_model_input[0]]),
t=timestep,
context=negative_prompt_embeds,
fps=fps_embeds,
**i2v_extra_kwrags,
)[0]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[0][:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[0][:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if self.offload:
self.transformer.cpu()
torch.cuda.empty_cache()
x0 = latents[0].unsqueeze(0)
videos = [self.vae.decode(x0)[0]]
if output_video is None:
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
else:
output_video = torch.cat(
[output_video, videos[0][:, overlap_history:].clamp(-1, 1).cpu()], 1
) # c, f, h, w
output_video = [(output_video / 2 + 0.5).clamp(0, 1)]
output_video = [video for video in output_video]
output_video = [video.permute(1, 2, 3, 0) * 255 for video in output_video]
output_video = [video.cpu().numpy().astype(np.uint8) for video in output_video]
return output_video